
Embedded IDE Link™ VS 2
User’s Guide

How to Contact The MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.
Embedded IDE Link™ VS User’s Guide
© COPYRIGHT 2007-2009 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.
Revision History
May 2007 Online only New for Version 1.0 (Release 2007a+)
September 2007 Online only Revised for Version 1.1 (Release 2007b)
March 2008 Online only Revised for Version 2.0 (Release 2008a)
October 2008 Online only Revised for Version 2.1 (Release 2008b)
March 2009 Online only Revised for Version 2.2 (Release 2009a)

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Contents

Getting Started

1
Product Overview . 1-2

The Structure and Components of Embedded IDE Link
VS Software . 1-4
Automation Interface . 1-4
Project Generator . 1-5
Verification . 1-5

Automation Interface
2

Getting Started with Automation Interface 2-2
Introducing the Embedded IDE Link VS Tutorial 2-2
Running the Interactive Tutorial . 2-5
Selecting Your Session and Processor 2-6
Querying Objects for VisualDSP++ IDE 2-7
Loading Files into VisualDSP++ IDE 2-9
Running the Project . 2-11
Working with Global Variables and Memory 2-12
Working with Local Variables and Memory 2-13
Closing Files and Projects . 2-16
Closing the Connections or Cleaning Up VisualDSP++
Software . 2-16

Tutorial Summary . 2-17

Constructing Objects . 2-18
Example — Constructor for adivdsp Objects 2-18

Properties and Property Values . 2-20
Setting and Retrieving Property Values 2-20
Setting Property Values Directly at Construction 2-21

iii

Setting Property Values with set . 2-21
Retrieving Properties with get . 2-22
Direct Property Referencing to Set and Get Values 2-22
Overloaded Functions for adivdsp Objects 2-23

adivdsp Object Properties . 2-24
Quick Reference to adivdsp Properties 2-24
Details About adivdsp Object Properties 2-25

Project Generator

3
Introducing Project Generator . 3-2

Using the Embedded IDE Link VS Blockset 3-3

Schedulers and Timing . 3-10
Configuring Models for Asynchronous Scheduling 3-10
Using Asynchronous Scheduling . 3-12
Using Scheduling Blocks to Control Code Execution 3-14
Comparing Synchronous and Asynchronous Interrupt
Processing . 3-15

Using Synchronous Scheduling . 3-17
Using Asynchronous Scheduling . 3-18
Multitasking Scheduler Examples . 3-23

Project Generator Tutorial . 3-37
Building the Model . 3-37
Adding the Target Preferences Block to Your Model 3-38
Specifying Simulink Configuration Parameters for Your
Model . 3-41

Setting Code Generation Options for Analog Devices
Processors . 3-44

Setting Real-Time Workshop Category Options 3-47
Target File Selection . 3-48
Build Process . 3-48

iv Contents

Custom storage class . 3-48
Report Options . 3-49
Debug Pane Options . 3-50
Optimization Pane Options . 3-51
Embedded IDE Link VS Pane Options 3-53
Overrun Indicator and Software-Based Timer 3-60
Embedded IDE Link VS Default Project Options —
Custom . 3-60

Optimizing Embedded Code with Target Function
Libraries . 3-62
About Target Function Libraries and Optimization 3-62
Using a Processor-Specific Target Function Library to
Optimize Code . 3-64

Process of Determining Optimization Effects Using
Real-Time Profiling Capability . 3-65

Reviewing Processor-Specific Target Function Library
Changes in Generated Code . 3-65

Reviewing Target Function Library Operators and
Functions . 3-68

Creating Your Own Target Function Library 3-68

Model Reference and Embedded IDE Link VS
Software . 3-69
How Model Reference Works . 3-69
Using Model Reference with Embedded IDE Link VS
Software . 3-70

Configuring Targets to Use Model Reference 3-72

Verification
4

What is Verification? . 4-2

Using Processor-in-the-Loop . 4-3
Processor-in-the-Loop Overview . 4-3
PIL Block . 4-6
PIL Issues . 4-6
Creating and Using PIL Blocks . 4-7

v

Real-Time Execution Profiling . 4-10
Overview . 4-10
Profiling Execution by Tasks . 4-11
Profiling Execution By Subsystems 4-14

System Stack Profiling . 4-18
Overview . 4-18
Profiling System Stack Use . 4-19

Function Reference
5

Constructor . 5-2

IDE Operations . 5-3

Processor Operations . 5-4

Debug Operations . 5-5

Read/Write Operations . 5-6

Get Information Operations . 5-7

Object Information . 5-8

Status Operations . 5-9

Session Operations . 5-10

Verification . 5-11

vi Contents

Functions — Alphabetical List

6

Block Reference
7

Blackfin DSP Support . 7-2

Core Support . 7-3

SHARC DSP Support . 7-4

TigerSHARC DSP Support . 7-5

Target Preferences . 7-6

Blocks — Alphabetical List

8

Embedded IDE Link VS Software Configuration
Parameters

9
Embedded IDE Link VS Pane . 9-2
Embedded IDE Link VS Overview . 9-4
IDE link handle name . 9-6
Profile real-time execution . 9-7
Profile by . 9-9
Number of profiling samples to collect 9-10
Inline run-time library functions . 9-12
Project options . 9-14
Compiler options string . 9-16

vii

Linker options string . 9-18
System stack size (MAUs) . 9-20
Build action . 9-21
Interrupt overrun notification method 9-24
Interrupt overrun notification function 9-26
PIL block action . 9-27
Maximum time allowed to build project (s) 9-29
Maximum time to complete IDE operations (s) 9-31
Source file replacement . 9-33

Examples

A
Automation Interface . A-2

Working with adivdsp Objects . A-2

Working with adivdsp objects . A-2

Asynchronous Scheduler . A-2

Mutlitasking Scheduler . A-2

Project Generator . A-2

Verification . A-3

Reported Limitations and Tips

B
Reported Issues Using Embedded IDE Link VS
Software . B-2
Using 64-bit Symbols in a 64-bit Memory Section on SHARC
Processors . B-2

viii Contents

Index

ix

x Contents

1

Getting Started

• “Product Overview” on page 1-2

• “The Structure and Components of Embedded IDE Link VS Software” on
page 1-4

1 Getting Started

Product Overview
Embedded IDE Link™ VS software provides a connection between MATLAB®
and the VisualDSP++® IDE to enable you to access the processor from
MATLAB. You can, manipulate data on the processor, and manage projects
within the IDE, while simultaneously utilizing the MATLAB tools of
numerical analysis and simulation. Using Embedded IDE Link VS software,
you can perform the following tasks, and others related to Model-Based
Design:

• Function calls — Write scripts in MATLAB software to execute any
function in the VisualDSP++ IDE

• Automation — Write automated tests in MATLAB software to be executed
on your processor, including control and verification operations

• Host-Processor Communication — Communicate with the processor
directly from MATLAB software, without going to the IDE

• Verification and Validation

- Load and execute projects into the VisualDSP++ IDE from the MATLAB
command line

- Build and compile code, and then use vectors of test data and parameters
to test the code

- Build and compile your code, and then download the code to the
processor and execute it

• Design models — Design models and algorithms in MATLAB and
Simulink® software and run them on the processor

• Generate code— Generate executable code for your processor directly from
the models designed in Simulink software, and execute it

Embedded IDE Link VS software connects MATLAB software and Simulink
software with Analog Devices™ VisualDSP++® integrated development and
debugging environment from Analog Devices™. Embedded IDE Link VS
software enables you to use MATLAB and Simulink software to debug and
verify embedded code running on all Analog Devices DSPs that VisualDSP++
software supports, such as the Analog Devices™ Blackfin®, Analog Devices™
SHARC® and Analog Devices™ Tiger SHARC® processor families.

1-2

Product Overview

Embedded IDE Link VS software includes a project generator component.
With the project generator component, you can generate a complete project file
for the VisualDSP++ IDE from Simulink software models, using ANSI® C code
generated with Real-Time Workshop® software. Thus, you use the Real-Time
Workshop and Real-Time Workshop® Embedded Coder™ software to generate
generic ANSI C code projects for VisualDSP++ software from models, that you
can then build and run on Blackfin®, SHARC®, and TigerSHARC® processors.

The following list suggests some of the uses for the capabilities of the software:

• Create test benches in MATLAB and Simulink software for testing your
hand written or automatically generated code running on ADI DSPs

• Generate code and project files for VisualDSP++ software from Simulink
models for rapid prototyping or deployment of a system or application

• Build, debug, and verify embedded code on ADI DSPs

• Perform processor-in-the-loop (PIL) testing of embedded code

1-3

1 Getting Started

The Structure and Components of Embedded IDE Link VS
Software

In this section...

“Automation Interface” on page 1-4
“Project Generator” on page 1-5
“Verification” on page 1-5

Embedded IDE Link VS software comprises components—the Automation
Interface component, the Project Generation component, and the Verification
component. The Automation Interface component enables communication
between MATLAB software and Embedded IDE Link VS software. The
Project Generation component leverages Simulink software and lets you
build models, simulate them, and generate code from the models directly
to the processor.

The Verification component offers capabilities that help you use Model-Based
Design to validate and verify your projects. With the Verification component,
you can simulate algorithms and processes in Simulink models and
concurrently on your processor. Comparing the results helps verify the fidelity
of you model or algorithm code.

Automation Interface
The Automation Interface component allows you to use Embedded IDE Link
VS functions and methods to communicate with the VisualDSP++ IDE to
perform the following tasks:

• Automate project management

• Debug programs

• Manipulate the data in the processor internal and external memory, and
in the registers

• Communicate between the host and processor applications

The Debug Component of automation interface includes methods and
functions for project automation, debugging, and data manipulation.

1-4

The Structure and Components of Embedded IDE Link™ VS Software

Project Generator
The Project Generator component comprises methods that utilize the
VisualDSP++ API to create projects in VisualDSP++ software and generate
code with Real-Time Workshop and Real-Time Workshop Embedded Coder
software. With the interface, you can do the following:

• Automatic project-based build process — Automatically create and build
projects for code generated by Real-Time Workshop or Real-Time Workshop
Embedded Coder software.

• Custom code generation — Use Embedded IDE Link VS software
with any Real-Time Workshop System Target File (STF) to generate
processor-specific and optimized code.

• Automatic downloading and debugging — Debug generated code in the
VisualDSP++ debugger, using either the instruction set simulator or real
hardware.

• Create and build projects for VisualDSP++ software from Simulink models
— Project Generator uses Real-Time Workshop or Real-Time Workshop
Embedded Coder software to build projects that work with Analog Devices
processors.

• Generate custom code using the Configuration Parameters in your model
with the system target files vdsplink_ert.tlc and vdsplink_grt.tlc.

Verification
Verifying your processes and algorithms is an essential part of developing
applications. The components of Embedded IDE Link VS software combine to
provide the following verification tools for you to apply as you develop your
code:

Processor-in-the-Loop Cosimulation
Use cosimulation techniques to verify generated code running in an
instruction set simulator or real hardware environment.

Task Execution and Stack Usage Profiling
Gather execution profiling measurements with VisualDSP++ instruction set
simulator to establish the timing requirements of your algorithm. Also, verify
the stack usage is appropriate and as expected.

1-5

1 Getting Started

1-6

2

Automation Interface

• “Getting Started with Automation Interface” on page 2-2

• “Constructing Objects” on page 2-18

• “Properties and Property Values” on page 2-20

• “adivdsp Object Properties” on page 2-24

2 Automation Interface

Getting Started with Automation Interface

In this section...

“Introducing the Embedded IDE Link VS Tutorial” on page 2-2
“Running the Interactive Tutorial” on page 2-5
“Selecting Your Session and Processor” on page 2-6
“Querying Objects for VisualDSP++ IDE” on page 2-7
“Loading Files into VisualDSP++ IDE” on page 2-9
“Running the Project” on page 2-11
“Working with Global Variables and Memory ” on page 2-12
“Working with Local Variables and Memory” on page 2-13
“Closing Files and Projects” on page 2-16
“Closing the Connections or Cleaning Up VisualDSP++ Software” on page
2-16
“Tutorial Summary” on page 2-17

Introducing the Embedded IDE Link VS Tutorial
Embedded IDE Link VS software provides a connection between MATLAB
software and a processor in VisualDSP++ software. You can use objects as a
mechanism to control and manipulate a signal processing application using
the computational power of MATLAB software. This approach can help you
while you debug and develop your application. Another possible use for
automation is creating MATLAB scripts that verify and test algorithms that
run in their final implementation on your production processor.

Note Before using the functions available with the objects, you must select
a session in the VisualDSP++ IDE. The object you create is specific to a
designated session in VisualDSP++ IDE.

To get you started using objects for VisualDSP++ software, Embedded IDE
Link VS software includes an example script vdsptutorial.m. As you work

2-2

Getting Started with Automation Interface

through this tutorial, you perform the following tasks that step you through
creating and using objects for VisualDSP++ IDE.

1 Select your session.

2 Create and query objects to VisualDSP++ IDE.

3 Use MATLAB software to load files into VisualDSP++ software IDE.

4 Work with your VisualDSP++ IDE project from MATLAB software.

5 Close the connections you opened to VisualDSP++ IDE.

You use these tasks in any development work you do with signal processing
applications. Thus, the tutorial provided here gives you a working process
and best practice for using Embedded IDE Link VS software and your signal
processing programs to develop programs for a range of Analog Devices
processors.

The tutorial covers some methods and functions for Embedded IDE Link VS
software. The functions listed first do not require an adivdsp object. The
functions listed after that require an existing adivdsp object before you can
use the function syntax.

Functions for Working with VisualDSP++ Software
The following table shows functions that do not require an object.

Function Description

listsessions Return information about the boards that
VisualDSP++ IDE recognizes as installed on
your PC.

adivdsp Construct an object that refers to a VisualDSP++
IDE session. When you construct the object you
specify the session by processor.

2-3

2 Automation Interface

Methods for Working with adivdsp Objects in VisualDSP++
Software
The following table presents some of the methods that require an adivdsp
object.

Methods Description

add Add a file to a project
address Return the address and page for an entry in the

symbol table in VisualDSP++ IDE
build Build the project in VisualDSP++ software
cd Change the working directory
display Display the properties of an object that references

a VisualDSP++ software session
halt Terminate execution of a process running on the

processor
info Return information about the object or session
isrunning Test whether the processor is executing a process
load Load a built project to the processor
open Open a file in the project
read Retrieve data from memory on the processor
reset Restore the program counter (PC) to the entry

point for the current program
run Execute the program loaded on the processor
save Save files or projects
visible Set whether VisualDSP++ IDE window is visible

on the desktop while VisualDSP++ IDE is
running

write Write data to memory on the processor

2-4

Getting Started with Automation Interface

Running VisualDSP++ Software on Your Desktop — Visibility
When you create an adivdsp object in the tutorial in the next section,
Embedded IDE Link VS starts VisualDSP++ software in the background.

If VisualDSP++ software is running in the background, it does not appear on
your desktop, in your task bar, or on the Applications page in the Task
Manager. It does appear as a process, idde.exe, on the Processes tab in
Task Manager.

You can make the VisualDSP++ IDE visible with the function visible.
The function isvisible returns the status of the IDE—is it visible on your
desktop. To close the IDE when it is not visible and MATLAB is not running,
use the Processes tab in WindowsWindows® Task Manager and look for
idde.exe.

If an object that refers to VisualDSP++ software exists when you close
VisualDSP++ software, the application does not close. Windows software
moves it to the background (it becomes invisible). Only after you clear
all objects that access VisualDSP++ IDE, or close MATLAB, does closing
VisualDSP++ unload the application. You can see if VisualDSP++ IDE is
running in the background by checking in the Windows Task Manager. When
VisualDSP++ IDE is running, the entry idde.exe appears in the Image
Name list on the Processes tab.

Running the Interactive Tutorial
You have the option of running this tutorial from the MATLAB command line
or entering the functions as described in the following tutorial sections.

To run the tutorial in MATLAB, click run vdspautointtutorial. This
command launches the tutorial in an interactive mode where the tutorial
program provides prompts and text descriptions to which you respond to move
to the next section. The interactive tutorial covers the same information
provided by the following tutorial sections. You can view the tutorial M-file
used here by clicking vdspautointtutorial.m.

2-5

2 Automation Interface

Note To run the interactive tutorial, you must have at least one session
configured in VisualDSP++ software. If you do not yet have a session, use
the Analog Devices VisualDSP++ Configurator to create a session to use for
this tutorial.

Selecting Your Session and Processor
Embedded IDE Link VS IDE requires that you have at least one session
available for VisualDSP++ software. To help you select the session to use for
this tutorial, and for any development work, Embedded IDE Link VS software
provides a command line tool, called listsessions, which prints a list of the
available sessions. So that you can use this function in a script, listsessions
can return a MATLAB structure that you use when you want your script to
select a session in the IDE without your help.

Note The session you select is used throughout the tutorial.

1 To see a list of the sessions that you can use, enter the following command
at the MATLAB prompt:

session_list = listsessions

MATLAB returns a list that shows all the sessions that Embedded IDE
Link VS IDE recognizes as available in your installation.

session_list =

'ADSP-21060 ADSP-2106x Simulator'
'ADSP-21362 ADSP-2136x Simulator'

2 listsessions has a verbose mode that provides further details about the
sessions in a cell array. The array contains structures that describe each
session—the target type, the platform, and the processor.

sessionsinfo = listsessions('verbose');

echo off

2-6

Getting Started with Automation Interface

sessionname: 'ADSP-21362 ADSP-2136x Simulator'
targettype: 'ADSP-2136x Family Simulator'

platformname: 'ADSP-2136x Simulator'
processors: 'ADSP-21362'

3 Use adivdsp to create an object that accesses a session in VisualDSP++
IDE.

vd = adivdsp('sessionname','ADSP-21362 ADSP-2136x Simulator','procnum',0)

Sessionname and procnum are property names that specify the property to
set. ADSP-21362 ADSP-2136x Simulator is the session to access, and 0 is
the number of the processor to refer to in the session.

When you use adivdsp, you create an object, in this case vd, that refers to
the session you specify in sessionname.

Querying Objects for VisualDSP++ IDE
In this tutorial section you create the connection between MATLAB and
VisualDSP++ IDE. This connection, or object, is a MATLAB object, which
for this session you save as variable vd. You use function adivdsp to create
objects. When you create objects, adivdsp input arguments let you define
other object properties, such as the global time-out. Refer to the adivdsp
reference information for more about the input arguments.

Use the generated object vd to direct actions to your session processor. In the
following tasks, vd appears in all function syntax that interact with IDE
session and the processor: The object vd identifies and refers to a specific
session. You need to include the object in any method syntax you use to access
and manipulate a project or files in a session in VisualDSP++ IDE.

1 Create an object that refers to your selected session and processor. Enter
the following command at the prompt.

vd = adivdsp('sessionname','ADSP-21362 ADSP-2136x Simulator','procnum',0)

If you watch closely, and your machine is not too fast, you see VisualDSP++
software appear briefly when you call adivdsp. If VisualDSP++ was not
running before you created the new object, VisualDSP++ software starts
and runs in the background.

2-7

2 Automation Interface

Usually, you need to interact with VisualDSP++ while you develop your
application. The function visible, controls the state of VisualDSP++
software on your desktop. visible accepts Boolean inputs that make
VisualDSP++ software either visible on your desktop (input to visible ≥ 1)
or invisible on your desktop (input to visible = 0). For this tutorial, you
need to interact with the development environment, so use visible to
set the IDE visibility to 1.

2 To make VisualDSP++ IDE show on your desktop, enter the following
command at the prompt:

visible(vd,1)

3 Next, enter display(vd) at the prompt to see the status information.

ADIVDSP Object:
Session name : ADSP-21362 ADSP-2136x Simulator
Processor name : ADSP-21362
Processor type : ADSP-21362
Processor number : 0
Default timeout : 10.00 secs

Embedded IDE Link VS software provides three methods to read the status
of a processor:

• info— Return a structure of testable session conditions.

• display— Print information about the session and processor.

• isrunning— Return the state (running or halted) of the processor.

4 Type procinfo = info(vd).

The vd link status information provides data about the hardware, as
follows:

procinfo =

procname: 'ADSP-21362'
proctype: 'ADSP-21362'
revision: ''

5 Verify that the processor is running by entering

2-8

Getting Started with Automation Interface

runstatus = isrunning(vd)

MATLAB responds, indicating that the processor is stopped, as follows:

runstatus =

0

Loading Files into VisualDSP++ IDE
You have established the connection to a processor and board. Using three
methods you learned about the hardware, whether it was running, its
type, and whether VisualDSP++ IDE was visible. Next, give the processor
something to do.

In this part of the tutorial, you load the executable code for the CPU in the
IDE. Embedded IDE Link VS software includes a tutorial project file for
VisualDSP++ IDE. Through the next commands in the tutorial, you locate
the tutorial project file and load it into VisualDSP++ IDE. The open method
directs VisualDSP++ software to load a project file or workspace file.

Note To continue the tutorial, you must identify or create a directory to
which you have write access. Embedded IDE Link VS software cannot create
a directory for you. If you do not have a writable directory, create one in
Windows software before you proceed with the rest of this tutorial.

VisualDSP++ software has its own workspace and workspace files that are
quite different from MATLAB workspace files and the MATLAB workspace.
Remember to monitor both workspaces. The next steps change the working
directory to your new writable directory.

1 Use cd to switch to the writable directory

prj_dir = cd('C:\vdsp_demo')

where the name and path to the writable directory is a string, such as
C:\vdsp_demo as used in the example. Replace C:\vdsp_demo with the
full path to your directory.

2-9

2 Automation Interface

2 Change your working directory to the new directory by entering the
following command:

cd(vd,prj_dir)

3 Next, use the following command to create a new VisualDSP++ software
project named dot_product_c.dpj in the new directory:

new(vd,'debug_demo.dpj')

Look in the IDE to verify that your new project exists. Next you need to
add source files to your project.

4 Add the provided source file—scalarprod.c to the project debug_demo.dpj
using the following command:

add(vd,'matlabroot\toolbox\vdsplink\vdspdemos\src\scalarprod.c')

The variable matlabroot indicates the root directory of your MATLAB
installation. Replace matlabroot with the path to MATLAB on your
machine. For more information about the MATLAB root directory, refer
to matlabroot in the MATLAB documentation.

5 Open the file in the IDE from MATLAB by issuing the following command
to open the file:

open(vd,'matlabroot\toolbox\vdsplink\vdspdemos\src\scalarprod.c')

Switch to the IDE to verify that the files are in your project and open.

6 Save your project.

save(vd,'debug_demo.dpj','project')

Your IDE project is saved with the name debug_demo.dpj in your writable
directory. The input string ’project’ specifies that you are saving a project
file.

2-10

Getting Started with Automation Interface

Running the Project
After you create dot_project_c.dpj in the IDE, you can use Embedded IDE
Link VS functions to create executable code from the project and load the
code to the processor.

The next steps in this tutorial build the executable and download and run
it on your processor.

1 Use the following build command to build an executable module from the
project dot_product_c.dpj.

build(vd,30) % The optional input argument 30 sets the time out period to 30 seconds.

At the end of the build process, Embedded IDE Link VS software returns a
value of 1 to indicate that the build succeeded. If the build process returns
a 0, the build failed.

ans =

1

2 To load the new executable to the processor, use load with the project file
name and the object name. The name of the executable is debug_demo.dxe,
and it is stored with the project in your writable directory, in a subdirectory
named debug.

load(vd,'c:\vdsp_demo\debug\debug_demo.dxe',30);

Embedded IDE Link VS software provides methods to control processor
execution—run, halt, and reset. To demonstrate these methods, use run to
start the program you loaded on the processor, and then use halt to stop
the processor.

Try the following methods at the command prompt.

run(vd) % Start the program running on the processor.

halt(vd) % Halt the processor.

reset(vd) % Reset the program counter to start of program.

2-11

2 Automation Interface

Working with Global Variables and Memory
After you load your program on the processor, you can access memory locations
and variables. You can then read variables either from the program symbol
table or directly from addresses in memory. Three methods—address, read,
and write, let you get, read, and write to and from your project and processor.

Start by getting the address of the global variable v1 from the debug_demo
project symbol table.

1 Enter the following command to retrieve the address for v1.

address_v1 = address(vd, 'v1')

address_v1 =

753666 1

2 Convert the address from decimal format to hexadecimal.

dec2hex(address_v1(1))

ans =

B8002

The address of global data array v1 is 0xB8002, which is stored in type
1 memory on the processor

3 With the address of v1 saved as address_v1, use read to return the data
from that location. To specify the data type and the number of values to
read, add the datatype (’int32’) and count (32) input arguments.

value_v1 = read(vd, address_v1, 'int32', 32) % Interpret the data as 32-bit integers.

value_v1 =

Columns 1 through 10

-37 -133 31 -104 32 66 -123 19 140 -28

Columns 11 through 20

2-12

Getting Started with Automation Interface

16 80 -2 83 -243 148 56 163 46 45

Columns 21 through 30

-217 -11 -164 49 -3 99 21 -61 -26 101

Columns 31 through 32

-101 -151

4 Repeat the read process for another global variable in the project—v2. Nest
the address method inside the read method to reduce typing.

value_v2 = read(vd,address(vd,'v2'),'int32',32) % Read and address methods in one call.

value_v2 =

Columns 1 through 10

-50 5 -17 28 5 31 -23 -156 68 -5

Columns 11 through 20

-220 5 -14 57 214 183 213 40 175 144

Columns 21 through 30

-12 -77 -18 77 130 -39 132 107 52 -59

Columns 31 through 32

127 -117

Working with Local Variables and Memory
If you examine the source files for debug_demo in the IDE, you can verify the
values for v1 and v2 in the source file scalarprod.c. You can also use the
address method to get the addresses of local variables on the stack, after
the variable is in scope.

2-13

2 Automation Interface

To get the variables in scope (on the stack), you run the program. Adding
a breakpoint to the program allows you to read the stack contents when
the program stops at the breakpoint. Without the breakpoint, the program
runs to completion, and you cannot read the contents of the stack because it
no longer exists.

Begin the process by adding a breakpoint to the project file scalarprod.c:

1 Insert a breakpoint on line 100 of program scalarprod.c with the
following command:

insert(vd, 'scalarprod.c', 100)

2 Run the program to add the variable to the stack, and move the program
counter to the breakpoint. Add the optional input argument timeout sets
the time out value to 30s instead of the default 20s value:

run(vd,'runtohalt',30)

The program stops at the breakpoint on line 100.

3 Read the address of the local variable result, and convert it to its
hexadecimal equivalent value.

address_result = address(vd,'result','local') % address_result is a 'local' variable.

address_result =

933884 1

dec2hex(address_result(1))

ans =

E3FFC

address returns 933884 as the location of result in memory, in type 1
memory on the processor, stored in the MATLAB variable address_result.

4 Use the variable address_result to get the value stored at that address by
issuing the following read command:

2-14

Getting Started with Automation Interface

actual_value_result = read(vd, address_result, 'int32')

actual_value_result =

18875

Verify in the IDE Output Window that 18875 is the correct value for the
dot product.

5 Use the following command to remove the breakpoint set on line 100.

remove(vd, 'scalarprod.c', 100)

MATLAB includes a dot product function to use to verify the value in
actual_value_result. Called dot, the function calculates the dot product of
two input vectors. In this case, the inputs are vectors value_v1 and value_v2.

Comparing the two results—expected_value_result in MATLAB with
actual_value_result from the processor implementation validates your
simulation and implementation. With Automation Interface methods, you
can create MATLAB M-file scripts to test and verify algorithms in their
implementation on a processor.

1 Calculate the expected result by performing the dot function with two
input vectors.

expected_value_result = dot(value_v1, value_v2)

expected_value_result =

18875

2 Test to see if the actual and expected results match.

isequal(expected_value_result, actual_value_result)

ans =

1

2-15

2 Automation Interface

3 After verifying the result and removing the breakpoint, run the program to
completion, and then halt and reset the processor.

run(vd)
hald(vd)
reset(vd)

Closing Files and Projects
You can close files in your projects from the MATLAB command line. The
method close works at the command line to close programs or projects in the
IDE through the adivdsp object and input keywords that describe the kind of
file to close.

To finish this tutorial, close the open documents or files in the IDE, and then
close the project debug_demo.dpj.

1 Close all of the open files and documents in the IDE. All of the open files
are text files, so use the text input argument.

close(vd, 'all', 'text')

2 Now, close the project.

close(vd, 'debug_demo.dpj', 'project')

Closing the Connections or Cleaning Up VisualDSP++
Software
Objects that you create in Embedded IDE Link VS software have connections
to VisualDSP++ software. Until you delete these handles, the VisualDSP++
process (idde.exe in the Windows Task Manager) remains in memory.
Closing MATLAB removes these objects automatically, but there may be times
when it helps to delete the handles manually, without quitting MATLAB.

Note When you clear the last adivdsp object, Embedded IDE Link VS
software closes VisualDSP++ software. When it closes the IDE, the link
software does not save current projects or files in the IDE, and it does not
prompt you to save them. A best practice is to save all of your projects and
files before you clear adivdsp objects from your MATLAB workspace.

2-16

Getting Started with Automation Interface

1 Use the following command to make the IDE invisible if it is visible on
your desktop.

visible(vd.0)

2 To delete your connection to VisualDSP++ IDE, use clear vd.

Tutorial Summary
During the tutorial you performed the following tasks:

1 Selected your session.

2 Created and queried objects that refer to a session in Embedded IDE Link
VS to get information about the session and processor.

3 Used MATLAB to load files into VisualDSP++ IDE, and used methods in
MATLAB to run that file.

4 Accessed variables in the program symbol table and on the processor.

5 Used the Automation Interface methods to compare the results of a
simulation in MATLAB with the same algorithm running on a processor.

6 Closed the files, projects, and connections you opened to VisualDSP++ IDE.

2-17

2 Automation Interface

Constructing Objects
When you create a connection to a session in VisualDSP++ software using the
adivdsp function, you create an object. The object implementation relies on
MATLAB object-oriented programming capabilities similar to the objects you
find in MATLAB or Filter Design Toolbox.

The discussions in this section apply to the objects in Embedded IDE Link
VS software. Because adivdsp objects use the MATLAB programming
techniques, the information about working with the objects, such as how
you get or set properties, or use methods, apply to the objects you create in
Embedded IDE Link VS software.

Like other MATLAB structures, objects in Embedded IDE Link VS software
have predefined fields referred to as object properties.

You specify object property values by one of the following methods:

• Specifying the property values when you create the object

• Creating an object with default property values, and changing some or all
of these property values later

For examples of setting link properties, refer to “Setting Property Values
with set.”

Example — Constructor for adivdsp Objects
The easiest way to create an object is to use the function adivdsp to create an
object with the default properties. Create an object named vd referring to a
session in VisualDSP++ software by entering the following syntax:

vd = adivdsp

MATLAB responds with a list of the properties of the object vd you created
along with the associated default property values.

ADIVDSP Object:
Session name : ADSP-21362 ADSP-2136x Simulator
Processor name : ADSP-21362
Processor type : ADSP-21362

2-18

Constructing Objects

Processor number : 0
Default timeout : 10.00 secs

The object properties are described in the adivdsp documentation.

Note These properties are set to default values when you construct links.

2-19

2 Automation Interface

Properties and Property Values

In this section...

“Setting and Retrieving Property Values” on page 2-20
“Setting Property Values Directly at Construction” on page 2-21
“Setting Property Values with set” on page 2-21
“Retrieving Properties with get” on page 2-22
“Direct Property Referencing to Set and Get Values” on page 2-22
“Overloaded Functions for adivdsp Objects” on page 2-23

Objects in this software have properties associated with them. Each property
is assigned a value. You can set the values of most properties, either when
you create the link or by changing the property value later. However, some
properties have read-only values. Also, a few property values, such as the
board number and the processor to which the link attaches, become read-only
after you create the object. You cannot change those after you create your link.

Setting and Retrieving Property Values
You can set adivdsp object property values by either of the following methods:

• Directly when you create the link — see “Setting Property Values Directly
at Construction”

• By using the set function with an existing link — see “Setting Property
Values with set”

Retrieve Embedded IDE Link VS software object property values with the
get function.

Direct property referencing lets you either set or retrieve property values for
adivdsp objects.

2-20

Properties and Property Values

Setting Property Values Directly at Construction
To set property values directly when you construct an object, include the
following entries in the input argument list for the constructor method
adivdsp:

• A string for the property name to set followed by a comma. Enclose the
string in single quotation marks as you do any string in MATLAB.

• The associated property value. Sometimes this value is also a string.

Include as many property names in the argument list for the object
construction command as there are properties to set directly.

Example — Setting Object Property Values at Construction
Suppose that you want to create a link to a session in VisualDSP++ software
and set the following object properties:

• Refer to the specified session.

• Connect to the first processor.

• Set the global time-out to 5 s. The default is 10 s.

Set these properties by entering

vd = adivdsp('sessionname','ADSP-21060 ADSP-2106x Simulator','procnum',0,'timeout',5);

The sessionname, procnum, and timeout properties are described in Link
Properties, as are the other properties for links.

Setting Property Values with set
After you construct an object, the set function lets you modify its property
values.

Using the set function, you can change the value of any writable property
of an object.

2-21

2 Automation Interface

Example — Setting Object Property Values Using set
To set the time-out specification for the link vd from the previous section,
enter the following syntax:

set(vd,'timeout',8);

get(vd,'timeout');
ans =

8

The display reflects the changes in the property values.

Retrieving Properties with get
You can use the get command to retrieve the value of an object property.

Example — Retrieving Object Property Values Using get
To retrieve the value of the sessionname property for vd2, and assign it to a
variable, enter the following syntax:

session = get(vd2,'sessionname')

session =

ADSP-21060 ADSP-2106x Simulator

Direct Property Referencing to Set and Get Values
You can directly set or get property values using MATLAB structure-like
referencing. Do this by using a period to access an object property by name,
as shown in the following example.

Example — Direct Property Referencing in Links
To reference an object property value directly, perform the following steps:

1 Create a link with default values.

2 Change its time-out and number of open channels.

2-22

Properties and Property Values

vd = adivdsp;
vd.time = 6;

Overloaded Functions for adivdsp Objects
Several methods and functions in Embedded IDE Link VS software have the
same name as functions in other MathWorks™ products. These functions
behave similarly to their original counterparts, but you apply them to an
object. This concept of having functions with the same name operate on
different types of objects (or on data) is called overloading of functions.

For example, the set command is overloaded for objects. After you specify
your object by assigning values to its properties, you can apply the methods
in this toolbox (such as address for reading an address in memory) directly
to the variable name you assign to your object. You do not have to specify
your object parameters again.

For a complete list of the methods that act on adivdsp objects, refer to the
Chapter 6, “Functions — Alphabetical List” in the function reference pages.

2-23

2 Automation Interface

adivdsp Object Properties

In this section...

“Quick Reference to adivdsp Properties” on page 2-24
“Details About adivdsp Object Properties” on page 2-25

Embedded IDE Link VS software provides links to your processor hardware
so you can communicate with processors for which you are developing systems
and algorithms. Because Embedded IDE Link VS software uses objects to
create the links, the parameters you set are called properties and you treat
them as properties when you set them, retrieve them, or modify them.

This section details the properties for the objects for VisualDSP++ software.
First the section provides tables of the properties, for quick reference.
Following the tables, the section offers in-depth descriptions of each property,
its name and use, and whether you can set and get the property value
associated with the property. Descriptions include a few examples of the
property in use.

MATLAB users may find much of this handling of objects familiar. Objects
in Embedded IDE Link VS software behave like objects in MATLAB and
the other object-oriented toolbox products. C++ programmers may already
understand the concepts described in this section.

Quick Reference to adivdsp Properties
The following table lists the properties for the links in Embedded IDE Link
VS software. The second column indicates the object to which the property
belongs. Knowing which property belongs to each object tells you how to
access the property.

Property
Name User Settable? Description

sessionname At construction
only

Reports the name of the session in
VisualDSP++ IDE that the object
references.

2-24

adivdsp Object Properties

Property
Name User Settable? Description

procnum At construction
only

Stores the number of the processor in
the session. If you have more than one
processor, this number identifies the
specific processor.

timeout Yes/default Contains the global time-out setting for
the link.

Some properties are read only. Thus, you cannot set the property value.
Other properties you can change at any time. If the entry in the User Settable
column is “At construction only”, you can set the property value only when
you create the object. Thereafter it is read only.

Details About adivdsp Object Properties
To use the objects for VisualDSP++ interface, set values for the following:

• sessionname— Specify the session with which the object interacts.

• procnum— Specify the processor in the session. If the board has multiple
processors, procnum identifies the processor to use.

• timeout— Specify the global time-out value. (Optional. Default is 10 s.)

Details of the properties associated with adivdsp objects appear in the
following sections, listed in alphabetical order by property name.

procnum
Property procnum identifies the processor referenced by an object for
Embedded IDE Link VS IDE. Use procnum to specify the processor you are
working with in the session specified by sessionname. The VisualDSP++
Configurator assigns a number to each processor installed in each session.
To determine the value of procnum for a processor, use listsessions or the
Configurator.

To identify a processor, you need the sessionname and procnum values. For
sessions with one processor, procnum equals 0. VisualDSP++ IDE numbers
the processors on multiprocessor boards sequentially from 0 to the total

2-25

2 Automation Interface

number of processors. For example, on a board with four processors, the
processors are numbered 0, 1, 2, and 3.

sessionname
Property sessionname identifies the session referenced by a Embedded
IDE Link VS software. When you create an object, you use sessionname
to specify the session you are intending to interact with. To get the value
for sessionname, use listsessions or the Analog Devices VisualDSP++
Configurator. The Configurator utility assigns the name for each session
available on your system.

timeout
Property timeout specifies how long VisualDSP++ software waits for any
process to finish. You set the global time-out when you create an object for
a session in VisualDSP++ IDE. The default global time-out value 10 s. The
following example shows the timeout value for object vd2.

display(vd2)

ADIVDSP Object:
Session name : ADSP-21060 ADSP-2106x Simulator
Processor name : ADSP-21060
Processor type : ADSP-21060
Processor number : 0
Default timeout : 10.00 secs

2-26

3

Project Generator

• “Introducing Project Generator” on page 3-2

• “Using the Embedded IDE Link VS Blockset” on page 3-3

• “Schedulers and Timing” on page 3-10

• “Project Generator Tutorial” on page 3-37

• “Setting Code Generation Options for Analog Devices Processors” on page
3-44

• “Setting Real-Time Workshop Category Options” on page 3-47

• “Optimizing Embedded Code with Target Function Libraries” on page 3-62

• “Model Reference and Embedded IDE Link VS Software” on page 3-69

3 Project Generator

Introducing Project Generator
Project generator provides the following features for developing projects and
generating code:

• Automated project building for VisualDSP++ software that lets you
create VisualDSP++ software projects from code generated by Real-Time
Workshop and Real-Time Workshop Embedded Coder software. Project
generator populates projects in the VisualDSP++ software development
environment.

• Blocks in the library vdsplinklib for controlling the scheduling and
timing in generated code.

• Highly configurable code generation using model configuration parameters
and target preferences block options.

• Capability to use Embedded IDE Link VS software with one of two system
target files to generate code specific to your processor.

• Highly configurable project build process.

• Automatic downloading and running of your generated projects on your
processor.

To configure your Simulink software models to use the Project Generator
component, do one or both of the following tasks:

• Add a Target Preferences block from the Embedded IDE Link VS blockset
(vdsplinklib) to the model.

• To use the asynchronous scheduler capability in Embedded IDE Link VS
software, add one or more hardware interrupt blocks or idle task block from
the Embedded IDE Link VS blockset (vdsplinklib).

The following sections describe the blockset and the blocks in it, the scheduler,
and the Project Generator component.

3-2

Using the Embedded IDE Link™ VS Blockset

Using the Embedded IDE Link VS Blockset
Embedded IDE Link VS block library vdsplinklib comprises block libraries
that contain blocks designed for generating projects for specific processors.
The following table describes these libraries.

Library Description

Blackfin DSP Support
(vdsplinklib_blackfin)

Blocks for managing memory and task
scheduling on Blackfin processors

Core Support
(vdsplinklib_coresupport)

Blocks for task scheduling and
manipulating memory on ADI processors

SHARC DSP Support
(vdsplinklib_sharc)

Blocks for task scheduling on SHARC
processors

Target Preferences
(vdsplinklib_tgtpref)

Block that configures models for specific
ADI processors

TigerSHARC DSP Support
(vdsplinklib_tigersharc)

Blocks for task scheduling on Tiger
SHARC® processors

Blocks for the processor families are almost identical. Each block has a
reference page that describes the options for the block. Use the Help browser
to get more information about a block shown in any of the following figures.

The first figure shows the main library of libraries in the software.

3-3

3 Project Generator

3-4

Using the Embedded IDE Link™ VS Blockset

The next figure shows the Blackfin DSP Support library.

The Core Support library contains the blocks shown in the next figure.

3-5

3 Project Generator

The SHARC DSP Support library contains the block in the next figure.

3-6

Using the Embedded IDE Link™ VS Blockset

The target preferences library for all Analog Devices processors appears in
the next figure.

3-7

3 Project Generator

The TigerSHARC DSP Support library appear in the next figure.

3-8

Using the Embedded IDE Link™ VS Blockset

3-9

3 Project Generator

Schedulers and Timing

In this section...

“Configuring Models for Asynchronous Scheduling” on page 3-10
“Using Asynchronous Scheduling” on page 3-12
“Using Scheduling Blocks to Control Code Execution” on page 3-14
“Comparing Synchronous and Asynchronous Interrupt Processing” on page
3-15
“Using Synchronous Scheduling” on page 3-17
“Using Asynchronous Scheduling” on page 3-18
“Multitasking Scheduler Examples” on page 3-23

Configuring Models for Asynchronous Scheduling
Using the scheduling blocks, you can use an asynchronous (real-time)
scheduler for your processor application. The asynchronous scheduler enables
you to define interrupts and tasks to occur when you want by using blocks in
the following libraries:

• C281x DSP Chip Support

• C5000 DSP Chip Support

• C6000 DSP Chip Support

• Core Support

• Freescale™ MPC5500 Support

• Freescale MPC7400

• Blackfin DSP Support

• SHARC DSP Support

• TigerSHARC DSP Support

3-10

Schedulers and Timing

Note Models in this section are for example purposes only. You cannot build
and run them without additional blocks.

Also, you can schedule multiple tasks for asynchronous execution using the
blocks.

The following figures show a model updated to use the asynchronous
scheduler by converting the model to a function subsystem and then adding
a scheduling block (Hardware Interrupt) to drive the function subsystem in
response to interrupts.

Before
The following model uses synchronous scheduling provided by the base rate
in the model.

Out 1

1

Soft Threshold

Dead Zone

Dyadic Synthesis
Filter Bank

2: Asym
Dyadic Analysis

Filter Bank

2: Asym

Delay Alignment

In1

In2

In3

In4

Out 1

Out 2

Out 3

Out 4In1

1
Output

After
To convert to asynchronous operation, wrap the model in the previous figure
in a function block and drive the input from a Hardware Interrupt block. The
hardware interrupts that trigger the Hardware Interrupt block to activate an
ISR now triggers the model inside the function block.

3-11

3 Project Generator

Algorithm Inside the Function Call Subsystem Block
Here’s the model inside the function call subsystem in the previous figure. It
is the same as the original model that used synchronous scheduling.

Out 1

1

Soft Threshold

Dead Zone

Dyadic Synthesis
Filter Bank

2: Asym
Dyadic Analysis

Filter Bank

2: Asym

Delay Alignment

In1

In2

In3

In4

Out 1

Out 2

Out 3

Out 4In1

1
Output

Using Asynchronous Scheduling
The following sections present common cases for using the scheduling blocks
described in the previous sections.

Idle Task
The following model illustrates a case where the reverberation algorithm runs
in the context of a background task in bare-board code generation mode.

3-12

Schedulers and Timing

The function generated for this task normally runs in free-running
mode—repetitively and indefinitely. Subsystem execution of the reverberation
function is the same as the subsystem described for the Free-Running
DSP/BIOS Task. It is data driven via a background DMA interrupt-controlled
ISR, shown in the following figure.

Out1
1

Integer Delay

z
−2400

Feedback Gain

0.8

Delay Mix

.9

function

f()

In1
1

Hardware Interrupt Triggered Task
In the next figure, you see a case where a function (LED Control) runs in the
context of a hardware interrupt triggered task.

3-13

3 Project Generator

In this model, the Hardware Interrupt block installs a task that runs when
it detects an external interrupt. This task performs the specified function
with an LED.

Using Scheduling Blocks to Control Code Execution
Embedded IDE Link VS Hardware Interrupt blocks enable selected hardware
interrupts for the Analog Devices processors, generate corresponding ISRs,
and connect them to the corresponding interrupt service vector table entries.

When you connect the output of the Hardware Interrupt block to the control
input of a function-call subsystem, the generated subsystem code is called
from the ISRs each time the interrupt is raised.

3-14

Schedulers and Timing

The Idle Task block specifies one or more functions to execute as background
tasks in the code generated for the model. The functions are created from the
function-call subsystems to which the Idle Task block is connected.

Comparing Synchronous and Asynchronous Interrupt
Processing
Code generated for periodic tasks, both single- and multitasking, runs
via a timer interrupt. A timer interrupt ensures that the generated code
representing periodic-task model blocks runs at the specified period. The
periodic interrupt clocks code execution at runtime. This periodic interrupt
clock operates on a period equal to the base sample time of your model. You
can use timer interrupts with:

• Generated code that incorporates DSP/BIOS real-time operating system
(RTOS)

• Generated code that does not include DSP/BIOS RTOS

Note In timer-based models, the timer counts through one full
base-sample-time before it creates an interrupt. When Simulink software
finally execute the model, it is for time 0.

The following figure shows the relationship between model startup and
execution. Execution starts where your model executes the first interrupt,
offset to the right of t=0 from the beginning of the time line. Before the first
interrupt, the simulation goes through the timer set up period and one base
rate period.

3-15

3 Project Generator

����� 	
���
����
��
��������������

����������
�����

	
���
��
�����

	
���
��
�����

	
���
��
�����

Timer-based scheduling does not provide enough flexibility for some systems.
Systems for control and communications must respond to asynchronous
events in real time. Such systems may need to handle a variety of hardware
interrupts in an asynchronous, or aperiodic , fashion.

When you plan your project or algorithm, select your scheduling technique
based on your application needs.

• If your application processes hardware interrupts asynchronously, add the
appropriate asynchronous scheduling blocks from the library to your model:

- A Hardware Interrupt block, to create an interrupt service routine to
handle hardware interrupts on the selected processor

- An Idle Task block, to create a task that runs as a separate thread
The following table lists specific scheduling blocks for each supported
processor or family.

DSP Chip Library Support Scheduling Blocks

Blackfin DSP Support Hardware Interrupt
Core Support Idle Task

3-16

Schedulers and Timing

DSP Chip Library Support Scheduling Blocks

SHARC DSP Support Hardware Interrupt
TigerSHARC DSP Support Hardware Interrupt

• Simulink sets the base rate priority to 40, the lowest priority.

• If your application does not service asynchronous interrupts, include only
the algorithm and device driver blocks that specify the periodic sample
times in the model.

Note Generating code from a model that does not service asynchronous
interrupts automatically enables and manages a timer interrupt. The
periodic timer interrupt clocks the entire model.

Using Synchronous Scheduling
Code that runs synchronously via a timer interrupt requires an interrupt
service routine (ISR). Each model iteration runs after an ISR services a posted
interrupt. The code generated for Embedded IDE Link CC uses a timer. To
calculate the timer period, the software uses the following equation:

Timer Period
CPU Clock Rate Base Sample Time

Low Resolu
_

(_ _) * (_ _)
_

=
ttion Clock Divider

Prescaler
_ _

*

The software configures the timer so that the base rate sample time for the
coded process corresponds to the interrupt rate. Embedded IDE Link CC
calculates and configures the timer period to ensure the desired sample rate.

Different processor families use the timer resource and interrupt number
differently. Entries in the following table show the resources each family uses.

3-17

3 Project Generator

Processor
Family

Timer Resource Interrupt
Number

Simulink
Priority

Blackfin Core timer IVG #6 Core
Eventname
JVTMR

SHARC Core timer TMZ H1
TigerSHARC Timer 1 TIMER 1HP

40 for all
processors

The minimum base rate sample time you can achieve depends on two
factors—the algorithm complexity and the CPU clock speed. The maximum
value depends on the maximum timer period value and the CPU clock speed.

If all the blocks in the model inherit their sample time value, and you do not
define the sample time, Simulink assigns a default sample time of 0.2 second.

Using Asynchronous Scheduling
Embedded IDE Link VS enables you to model and automatically generate
code for asynchronous systems. To do so, use the following scheduling blocks:

• Hardware Interrupt blocks for bare-board code generation mode

• Idle Task

The Hardware Interrupt block operates by

• Generating selected hardware interrupts for the processor

• Generating corresponding ISRs for the interrupts

• Connecting the ISRs to the corresponding interrupt service vector table
entries

Note You are responsible for mapping and enabling the interrupts you
specify in the block dialog box.

3-18

Schedulers and Timing

Connect the output of the Hardware Interrupt block to the control input
of a function-call subsystem. By doing so, you enable the ISRs to call the
generated subsystem code each time the hardware raises the interrupt.

The Idle Task block specifies one or more functions to execute as background
tasks in the code generated for the model. The functions are created from the
function-call subsystems to which the Idle Task block is connected.

Mapping and Enabling Interrupts in Generated Code
Although the scheduling blocks generate ISRs to respond to interrupts, they
do not enable the interrupts in your code. The blocks also do not map the
interrupts to the specific ISRs you specify in the block dialog boxes.

To enable and map the interrupt routines, you provide code that performs the
mapping and enabling functions. ISR mapping and enabling code might look
like following samples which enable and map interrupts 5 and 7:

IRQ_map(IRQ_EVT_EXTINT5,5); % Map interrupt 5 in the block to ext. int.5.

IRQ_set(IRQ_EVT_EXTINT5); % Enable interrupt 5.

IRQ_map(IRQ_EVT_EXTINT7,7); % Map interrupt 7 in the block to ext. int.7.

IRQ_set(IRQ_EVT_EXTINT7); % Enable interrupt 7.

The following figure shows the block dialog box that specifies the interrupts

3-19

3 Project Generator

One way to add the custom code to your generated code is to add a System
Outputs block to your model. In the System Outputs block, you add the code
to enable and map the interrupts.

Real-Time Workshop includes the System Outputs block in the Custom Code
library.

When you add the System Outputs block to your model and open the block
dialog box, you see the following dialog box.

3-20

Schedulers and Timing

To enable and map the interrupts, add the code to the dialog box as shown in
the following figure.

3-21

3 Project Generator

Generating code from your model that includes the System Outputs block
adds the enabling and mapping code to your project so the interrupts work.

3-22

Schedulers and Timing

The following figure shows a top-level model c6000_hwi_interrupts that
includes the System Outputs block in the Function-Call Subsystem2
submodel.

Multitasking Scheduler Examples
provides a scheduler that supports multiple tasks running concurrently and
preemption between tasks running at the same time. The ability to preempt
running tasks enables a wide range of scheduling configurations.

Multitasking scheduling also means that overruns, where a task runs beyond
its intended time, can occur during execution.

To understand these example, you must be familiar with the following
scheduling concepts:

• Preemption is the ability of one task to pause the processing of a running
task to run instead. With the multitasking scheduler, you can define a
task as preemptible—thus, another task can pause (preempt) the task
that allows preemption. The scheduler examples in this section that
demonstrate preemption, illustrate one or more tasks allowing preemption.

• Overrunning occurs when a task does not reach completion before it is
scheduled to run again. For example, overrunning can occur when a
Base-Rate task does not finish in 1 ms. Overrunning delays the next
execution of the overrunning task and may delay execution of other tasks.

Examples in this section demonstrate a variety of multitasking configurations:

• “Three Odd-Rate Tasks Without Preemption and Overruns” on page 3-25

• “Two Tasks with the Base-Rate Task Overrunning, No Preemption” on
page 3-26

• “Two Tasks with Sub-Rate 1 Overrunning Without Preemption” on page
3-28

• “Three Even-Rate Tasks with Preemption and No Overruns” on page 3-29

3-23

3 Project Generator

• “Three Odd-Rate Tasks Without Preemption and the Base and Sub-Rate1
Tasks Overrun” on page 3-31

• “Three Odd-Rate Tasks with Preemption and Sub-Rate 1 Task Overruns”
on page 3-33

• “Three Even-Rate Tasks with Preemption and the Base-Rate and Sub-Rate
1 Tasks Overrun” on page 3-35

Each example presents either two or three tasks:

• Base Rate task. Base rate is the highest rate in the model or application.
The examples use a base rate of 1ms so that the task should execute every
one millisecond.

• Sub-Rate 1. The first subrate task. Sub-Rate 1 task runs more slowly than
the Base-Rate task. Sub-Rate 1 task rate is 2ms in the examples so that
the task should execute every 2ms.

• Sub-Rate 2. In examples with three tasks, the second subrate task is
called Sub-Rate 2. Sub-Rate 2 tasks run more slowly than Sub-Rate 1. In
the examples, Sub-Rate 2 runs at either 4ms or 3ms.

- When Sub-Rate 2 is 4ms, the example is called even.

- When Sub-Rate 2 is 3ms, the example is called odd.

Note The odd or even naming only identifies Sub-Rate 2 as being 3 or 4ms.
It does not affect or predict the performance of the tasks.

The following legend applies to the plots in the next sections:

• Blue triangles () indicate when the task started.

• Dark red areas () indicate the period during which a task is running

• Pink areas () within dark red areas indicate a period during which a
running task is suspended—preempted by a task with higher priority

3-24

Schedulers and Timing

Three Odd-Rate Tasks Without Preemption and Overruns
In this three task scenario, all of the tasks run as scheduled. No overruns
or preemptions occur.

Task Identification Intended Execution
Schedule

Actual Execution
Schedule

Base-Rate 1ms 1ms
Sub-Rate 1 2ms 2ms

Sub-Rate 2 4ms 4ms

3-25

3 Project Generator

Two Tasks with the Base-Rate Task Overrunning, No
Preemption
In this two rate scenario, the Base-Rate overruns the 1ms time intended and
prevents the subrate task from completing successfully or running every 2ms.

• Sub-Rate 1 does not allow preemption and fails to run when scheduled, but
is never interrupted.

• The Base-Rate runs every 2ms and Sub-Rate 1 runs every 4ms instead
of 2ms.

3-26

Schedulers and Timing

Task Identification Intended Execution
Schedule

Actual Execution
Schedule

Base-Rate 1ms 2ms (overrunning)
Sub-Rate 1 2ms 4ms (overrunning)

3-27

3 Project Generator

Two Tasks with Sub-Rate 1 Overrunning Without Preemption
In this example, two rates running simultaneously—the Base-Rate task and
one subrate task. Both the Base-Rate task and the Sub-Rate 1 task overrun.

• Base-Rate runs every 2ms instead of 1ms.

- The Sub-Rate 1 task both overruns and is affected by the Base-Rate
task overrunning.

- The Base-Rate task overrun delays Sub-Rate 1 task execution by a
factor of 4.

• Sub-Rate 1 runs every 8ms rather than every 2ms.

• The Base-Rate runs at 1ms.

• The Base-Rate task preempts Sub-Rate 1 when it tries to execute.

• The Sub-Rate 1 tasks overrun, taking up to 5ms to complete rather than
2ms.

3-28

Schedulers and Timing

Task Identification Intended Execution
Schedule

Actual Execution
Schedule

Base-Rate 1ms 2ms (overrunning)
Sub-Rate 1 2ms 8ms (overrunning)

Three Even-Rate Tasks with Preemption and No Overruns
In the following three task scenario, the Base-Rate runs as scheduled and
preempts Sub-Rate 1.

3-29

3 Project Generator

• Both the Base-Rate and Sub-Rate 1 tasks preempt Sub-Rate 2 task
execution.

• Preempting the subrate tasks does not prevent the subrate tasks from
running on schedule.

Task Identification Intended Execution
Schedule

Actual Execution
Schedule

Base-Rate 1ms 1ms

Sub-Rate 1 2ms 2ms

Sub-Rate 2 3ms 6ms

3-30

Schedulers and Timing

Three Odd-Rate Tasks Without Preemption and the Base and
Sub-Rate1 Tasks Overrun
Three tasks running simultaneously—the Base-Rate task and two subrate
tasks.

• Both the Base-Rate task and the Sub-Rate 1 task overrun.

• The Base-Rate task runs every 2ms instead of 1ms.

• Sub-Rate 1 and Sub-Rate 2 task execution is delayed by a factor of
2—Sub-Rate 1 runs every 4ms rather than every 2ms and Sub-Rate 2 runs
every 6ms instead of 3ms.

3-31

3 Project Generator

Task Identification Intended Execution
Schedule

Actual Execution
Schedule

Base-Rate 1ms 2ms (overrunning)
Sub-Rate 1 2ms 4ms (overrunning)
Sub-Rate 2 3ms 6ms (overrunning)

3-32

Schedulers and Timing

Three Odd-Rate Tasks with Preemption and Sub-Rate 1 Task
Overruns
In this three task scenario, the Base-Rate preempts Sub-Rate 1 which is
overrunning.

• The overrunning subrate causes Sub-Rate 1 to execute every 4ms instead
of 2ms.

• Every other fourth execution of Sub-Rate 2 does not occur.

• Instead of executing at t=0, 3, 6, 9, 12, 15, 18,…, Sub-Rate 2 executes at
t=0, 3, 9, 12, 15, 21, and so on.

• The t=6 and t=18 instances do not occur.

3-33

3 Project Generator

Task Identification Intended Execution
Schedule

Actual Execution
Schedule

Base-Rate 1ms 2ms (overrunning)
Sub-Rate 1 2ms 4ms (overrunning)
Sub-Rate 2 3ms 6ms (overrunning and

skipping every other
fourth execution)

3-34

Schedulers and Timing

Three Even-Rate Tasks with Preemption and the Base-Rate
and Sub-Rate 1 Tasks Overrun
In this three-task scenario, two of the tasks overrun—the Base-Rate and
Sub-Rate 1.

• The overrunning Base-Rate executes every 2ms.

• Sub-Rate 1 overruns due to the Base-Rate overrun, doubling the execution
rate.

• Also, Sub-Rate 1 is overrunning as well, doubling the execution rate again,
from the intended 2ms to 8ms.

• Sub-Rate 2 responds to the overrunning Base-Rate and Sub-Rate 1 tasks
by running every 16ms instead of every 4ms.

3-35

3 Project Generator

Task Identification Intended Execution
Schedule

Actual Execution
Schedule

Base-Rate 1ms 2ms (overrunning)
Sub-Rate 1 2ms 8ms (overrunning)
Sub-Rate 2 3ms 16ms (overrunning)

3-36

Project Generator Tutorial

Project Generator Tutorial

In this section...

“Building the Model” on page 3-37
“Adding the Target Preferences Block to Your Model” on page 3-38
“Specifying Simulink Configuration Parameters for Your Model” on page
3-41

In this tutorial you build a model and generate a project from the model into
VisualDSP++ IDE.

Note The model demonstrates project generation only. You cannot build and
run the model on your processor without additional blocks.

To generate a project from a model, complete the following tasks:

1 Use Simulink blocks, Signal Processing Blockset™ blocks, and blocks from
other blocksets to create the model application.

2 Add the target preferences block from the Embedded IDE Link VS Target
Preferences library to your model. Verify and set the block parameters for
your hardware. In most cases, the default settings work fine.

3 Set the configuration parameters for your model, including the following
parameters:

• Solver parameters such as simulation start and solver options

• Real-Time Workshop software options such as processor configuration
and processor compiler selection

4 Generate your project.

5 Review your project in VisualDSP++ software.

Building the Model
To build the model for audio reverberation, follow these steps:

3-37

3 Project Generator

1 Start Simulink software.

2 Create a new model by selecting File > New > Model from the Simulink
menu bar.

3 Use Simulink blocks and Signal Processing Blockset blocks to create the
following model.

Look for the Integer Delay block in the Discrete library of Simulink and
the Gain block in the Commonly Used Blocks library. Do not add the
Custom Board block at this time.

4 Save your model with a suitable name before continuing.

Adding the Target Preferences Block to Your Model
So that you can configure your model to work with Analog Devices processors,
Embedded IDE Link VS software includes a block library containing a target
preferences block for Analog Devices processor, Target Preferences.

Entering vdsplinklib_tgtpref at the MATLAB prompt opens this window
showing the library blocks. This block library is included in Embedded IDE
Link VS vdsplinklib blockset in the Simulink Library browser.

3-38

Project Generator Tutorial

To add the Target Preferences block to your model, follow these steps:

1 Double-click Embedded IDE Link VS in the Simulink Library browser
to open the vdsplinklib blockset.

2 Click the library Target Preferences to see the blocks available for your
processor.

3 Drag and drop the Custom Board block to your model as shown in the
following figure.

3-39

3 Project Generator

4 Double-click the Custom Board block to open the block dialog box.

5 In the Block dialog box, select your processor from the Processor list.

6 Verify the CPU clock value.

7 Select the session name from the Session name list. Verify that the
session processor matches the one you selected from the Processor list.

8 Review the settings on the Memory and Sections tabs to verify that they
are correct for the processor you selected.

9 Click OK to close the Target Preferences dialog box.

You have completed the model. Next, configure the model configuration
parameters to generate a project in VisualDSP++ IDE from your model.

3-40

Project Generator Tutorial

Specifying Simulink Configuration Parameters for
Your Model
The following sections describe how to configure the build and run parameters
for your model. Generating a project, or building and running a model on
the processor, starts with configuring model options in the Configuration
Parameters dialog box in Simulink software.

Setting Solver Options
After you have designed and implemented your digital signal processing model
in Simulink software, complete the following steps to set the configuration
parameters for the model:

1 Open the Configuration Parameters dialog box and set the appropriate
options on the Solver category for your model and for Embedded IDE Link
VS software.

• Set Start time to 0.0 and Stop time to inf (model runs without
stopping). If you set a stop time, your generated code does not honor the
setting. Set this to inf for completeness.

• Under Solver options, select the fixed-step and discrete settings
from the lists.

• Set the Fixed step size to Auto and the Tasking Mode to Single
Tasking.

Note Generated code does not honor Simulink stop time from the simulation.
Stop time is interpreted as inf. To implement a stop in generated code, you
must put a Stop Simulation block in your model.

Ignore the Data Import/Export, Diagnostics, and Optimization categories
in the Configuration Parameters dialog box. The default settings are correct
for your new model.

Setting Real-Time Workshop Software Options
To configure Real-Time Workshop software to use the correct processor files
and to compile and run your model executable file, you set the options in

3-41

3 Project Generator

the Real-Time Workshop category of the Select tree in the Configuration
Parameters dialog box. Follow these steps to set the Real-Time Workshop
software options to generate code tailored for your DSP:

1 Select Real-Time Workshop on the Select tree.

2 In Target selection, click Browse to select the system target file for
Analog Devices processors—vdsplink_grt.tlc. It may already be the
selected target file.

Clicking Browse opens the System Target File Browser to allow you
to changes the system target file.

3 On the System Target File Browser, select the system target file
vdsplink_grt.tlc, and click OK to close the browser.

Setting Embedded IDE Link VS Options
After you set the Real-Time Workshop options for code generation, set the
options that apply to your Analog Devices processor.

1 Change the category on the Select tree to Hardware Implementation.

2 Verify that the Device type is the correct value for your processor—ADI
Blackfin, ADI SHARC, or ADI TigerSHARC.

3 From the Select tree, choose Embedded IDE Link VS to specify code
generation options that apply to the processor.

4 Under Code Generation, select the Inline run-time library functions
option. Clear all other options.

5 (optional) Under Link Automation, provide a name for the handle in
IDE handle name.

6 Set the following options in the dialog box under Project options:

• Set Project options to Custom.

• Set Compiler options string and Linker options string to blank.

7 Set the following Runtime options:

3-42

Project Generator Tutorial

• Build action: Create_project.

• Interrupt overrun notification method: Print_message.

You have configured the Real-Time Workshop options that let you generate
a project for your processor. A few Real-Time Workshop categories on the
Select tree, such as Comments, Symbols, and Optimization do not require
configuration for use with Embedded IDE Link VS software. In some cases,
you may decide to set options in the other categories.

For your new model, the default values for the options in these categories
are correct. For other models you develop, you may want to set the options
in these categories to provide information during the build and to run TLC
debugging when you generate code. Refer to your Simulink and Real-Time
Workshop documentation for more information about setting the configuration
parameters.

Creating Your Project
After you set the configuration parameters and configure Real-Time Workshop
software to create the files you need, you direct the software to create your
project:

1 Click OK to close the Configuration Parameters dialog box.

2 Click Incremental Build () on the model toolbar to generate your project
into VisualDSP++ IDE.

When you click with Create_project selected for Build action, the
automatic build process starts VisualDSP++ software and populates a new
project in the development environment.

3-43

3 Project Generator

Setting Code Generation Options for Analog Devices
Processors

Before you generate code with the Real-Time Workshop software, set the
fixed-step solver step size and specify an appropriate fixed-step solver if the
model contains any continuous-time states. At this time, you should also
select an appropriate sample rate for your system. Refer to the Real-Time
Workshop User’s Guide for additional information.

Note Embedded IDE Link VS software does not support continuous states
in Simulink software models for code generation. In the Solver options
in the Configuration Parameters dialog box, you must select Discrete (no
continuous states) as the Type, along with Fixed step.

To open the Configuration Parameters dialog box for your model, select
Simulation > Configuration Parameters from the menu bar.

The following figure shows the Real-Time Workshop Select tree categories
when you are using Embedded IDE Link VS software.

3-44

Setting Code Generation Options for Analog Devices™ Processors

In the Select tree, the categories provide access to the options you use to
control how Real-Time Workshop software builds and runs your model. The
first categories under Real-Time Workshop in the tree apply to all Real-Time
Workshop targets including the processor and always appear on the list.

The last category under Real-Time Workshop is specific to Embedded IDE
Link VS system target files vdsplink_grt.tlc and vdsplink_ert.tlc and
appears when you select either target file.

When you select your target file in Target Selection on the Real-Time
Workshop pane, the options change in the tree.

For Embedded IDE Link VS software, the target file to select is
vdsplink_grt.tlc. Selecting either the vdsplink_grt.tlc or
vdsplink_ert.tlc adds options specific to Embedded IDE Link VS software
to the Select tree. The vdsplink_grt.tlc file is appropriate for all projects.
Select vdsplink_ert.tlc when you are developing projects or code for
embedded processors (requires Real-Time Workshop Embedded Coder
software) or you plan to use Processor-in-the-Loop features.

3-45

3 Project Generator

The following sections present each Real-Time Workshop options category
and the options available in each.

3-46

Setting Real-Time Workshop® Category Options

Setting Real-Time Workshop Category Options

In this section...

“Target File Selection” on page 3-48
“Build Process” on page 3-48
“Custom storage class” on page 3-48
“Report Options” on page 3-49
“Debug Pane Options” on page 3-50
“Optimization Pane Options” on page 3-51
“Embedded IDE Link VS Pane Options” on page 3-53
“Overrun Indicator and Software-Based Timer” on page 3-60
“Embedded IDE Link VS Default Project Options — Custom” on page 3-60

Use the options in the Select tree under Real-Time Workshop to perform
the following configuration tasks.

• Determine your processor, either Analog Devices or some other processor if
you are not using Embedded IDE Link VS software.

• Configure your build process.

• Specify whether to use custom storage classes.

When you select one of the Embedded IDE Link VS system target files, the
Embedded IDE Link VS category appears in the Select tree as shown in
the following figure.

3-47

3 Project Generator

Target File Selection

System target file
Clicking Browse opens the Target File Browser where you select
vdsplink_grt.tlc as your Real-Time Workshop System target file.

If you are using Real-Time Workshop Embedded Coder software, select the
vdsplink_ert.tlc target file in System target file.

Build Process
Embedded IDE Link VS software does not use makefiles or the build process
to generate code. Code generation is project based so the options here do
not apply.

Custom storage class
When you generate code from a model employing custom storage classes
(CSC), clear Ignore custom storage classes. This setting is the default
value for Embedded IDE Link VS software and for Real-Time Workshop
Embedded Coder software.

3-48

Setting Real-Time Workshop® Category Options

When you select Ignore custom storage classes, storage class attributes
and signals are affected in the following ways:

• Objects with CSCs are treated as if you set their storage class attribute
to Auto.

• The storage class of signals that have CSCs does not appear on the signal
line, even when you select Storage class from Format > Port/Signals
Display in your Simulink menus.

Ignore custom storage classes lets you switch to a processor that does
not support CSCs, such as the generic real-time target (GRT), without
reconfiguring your parameter and signal objects.

Generate code only
The Generate code only option does not apply to targeting with Embedded
IDE Link VS software. To generate source code without building and
executing the code on your processor, select Embedded IDE Link VS from the
Select tree. Then, under Runtime, select Create_project for Build action.

Report Options
Two options control HTML report generation during code generation.

• “Create Code Generation report” on page 3-49

• “Launch report automatically” on page 3-50

Create Code Generation report
After you generate code, this option tells the software whether to generate
an HTML report that documents the C code generated from your model.
When you select this option, Real-Time Workshop writes the code
generation report files in the html subdirectory of the build directory. The
top-level HTML report file is named modelname_codegen_rpt.html or
subsystemname_codegen_rpt.html. For more information about the report,
refer to the online help for Real-Time Workshop. You can also use the
following command at the MATLAB prompt to get more information.

docsearch 'Create code generation report'

3-49

3 Project Generator

In the Navigation options, when you select Model-to-code and
Code-to-model, your HTML report includes hyperlinks to various features
in your Simulink model.

Launch report automatically
This option directs Real-Time Workshop to open a MATLAB Web browser
window and display the code generation report. If you clear this option,
you can open the code generation report (modelname_codegen_rpt.html or
subsystemname_codegen_rpt.html) manually in a MATLAB Web browser
window or in another Web browser.

Debug Pane Options
Real-Time Workshop software uses the Target Language Compiler (TLC)
to generate C code from the model.rtw file. The TLC debugger helps you
identify programming errors in your TLC code. Using the debugger, you can
perform the following actions:

• View the TLC call stack.

• Execute TLC code line-by-line.

• Analyze or change variables in a specified block scope.

When you select Debug from the Select tree, you see the Debug options as
shown in the next figure. In this pane, you set options that are specific to the
Real-Time Workshop software process and TLC debugging.

3-50

Setting Real-Time Workshop® Category Options

For details about using the options in Debug, refer to “About the TLC
Debugger” in your Real-Time Workshop Target Language Compiler
documentation.

Optimization Pane Options
On the Optimization pane in the Configuration Parameters dialog box,
you set options for the code that Real-Time Workshop software generates
during the build process. Use these options to tailor the generated code to
your needs. Select Optimization from the Select tree on the Configuration
Parameters dialog box. The figure shows the Optimization pane when you
select the system target file vdsplink_grt.tlc under Real-Time Workshop
system target file.

3-51

3 Project Generator

The following options are typically selected for Real-Time Workshop software
to provide optimized code generation for common code operations:

• Conditional input branch execution

• Signal storage reuse

• Enable local block outputs

• Reuse block outputs

• Eliminate superfluous temporary variables (Expression folding)

• Loop unrolling threshold

• Optimize initialization code for model reference

For more information about using these and the other Optimization options,
refer to the Real-Time Workshop documentation.

3-52

Setting Real-Time Workshop® Category Options

Embedded IDE Link VS Pane Options
On the select tree, the Embedded IDE Link VS category provides options in
these areas:

• Runtime— Set options for run-time operations, like the build action.

• Processor-in-the-loop (PIL) verification — Enable processor in the
loop capability for your project.

• Project Options — Set build options for your project code generation,
including compiler and linker settings.

• Code Generation— Configure your code generation requirements, such
as enabling real-time task execution profiling.

• Link Automation— Export a handle to your MATLAB workspace.

• Diagnostic Options— Set options that control code generation diagnostic
messages.

Runtime
Before you run your model as an executable on any Analog Devices processor,
you must configure the run-time options for the model.

By selecting values for the options available, you configure the operation of
your model build process and overrun handling.

Build action
To specify to Real-Time Workshop software what to do when you click Build,
select one of the following options.:

• Create_project — Directs Real-Time Workshop software to start
VisualDSP++ IDE and populate a new project with the files from the
build process. This option offers a convenient way to build projects in
VisualDSP++ software.

• Archive_library— Directs Real-Time Workshop software to archive the
project for this model. Use this option when you plan to use the model in
a model reference application. Model reference requires that you archive
your VisualDSP++ software projects for models that you use in model
referencing.

3-53

3 Project Generator

• Build— Builds the executable file, but does not download the file to your
processor.

• Build_and_execute — Directs Real-Time Workshop software to build,
download, and run your generated code as an executable on your processor.

• Create_processor_in_the_loop_project — Directs the Real-Time
Workshop code generation process to create PIL algorithm object code as
part of the project build.

Your selection for Build action determines what happens when you click
Build or press Ctrl+B. Your selection tells Real-Time Workshop software at
which stage to stop the code generation and build process.

To run your model on the processor, select the default build action,
Build_and_execute. Real-Time Workshop software automatically downloads
and runs the model on your processor.

Note When you build and execute a model on your processor, the Real-Time
Workshop software build process resets the processor automatically. You do
not need to reset the board before building models.

Interrupt overrun notification method
To enable the overrun indicator, choose one of three ways for the processor
to respond to an overrun condition in your model:

• None— Ignore overruns encountered while running the model.

• Print_message—When the processor encounters an overrun condition, it
prints a message to the standard output device, stdout.

• Call_custom_function — Respond to overrun conditions by calling
the custom function you identify in Interrupt overrun notification
function.

Interrupt overrun notification function
When you select Call_custom_function from the Interrupt overrun
notification method list, you enable this option. Enter the name of the

3-54

Setting Real-Time Workshop® Category Options

function the processor should use to notify you that an overrun condition
occurred. The function must exist in your code on the processor.

PIL block action
If you have Real-Time Workshop Embedded Coder software installed and
you select the vdsplink_ert.tlc system target file, you can choose to use
the processor-in-the-loop (PIL) feature provided by Embedded IDE Link VS
software. Selecting Create_processor_in_the_loop_project for the Build
action enables the PIL block action option. PIL block action specifies
whether Real-Time Workshop software builds the PIL block and downloads
the block to the processor.

Choose one of the following three actions for creating a PIL block:

• None— Configures model to generate a VisualDSP++ project that contains
the PIL algorithm code. Does not build the PIL object code or block. The
new project will not compile in VisualDSP++ software.

• Create PIL block— Creates a PIL block, places the block in a new model,
and then stops without building or downloading the block. The resulting
project will not compile in VisualDSP++ IDE.

• Create PIL block_build_and_download — Builds and downloads the
PIL application to the processor after creating the PIL block. Adds PIL
interface code that exchanges data with Simulink software. Use this
selection to update the algorithmic code in an existing PIL block in a model.

Your selections affect how you use the resulting PIL block. The following list
describes the build process and actions you take based on the PIL block
action setting:

• When you click Build on the PIL dialog box, the build process adds the PIL
interface code to the project and compiles the project in VisualDSP++ IDE.

• If you select Create PIL block, you can build manually from the
right-click context menu on the PIL block.

• After you select Create PIL Block, copy the PIL block into your model to
replace the original subsystem. Save the original subsystem in a different
model so you can restore in the future. Click Build to build your model
with the PIL block in place.

3-55

3 Project Generator

• Add the PIL block to your model to use cosimulation to compare PIL results
with the original subsystem results. Refer to the demo Getting Started with
Application Development in the product demos Embedded IDE Link VS

• To use the PIL block in a project after you selected None or Create PIL
block for Block action when you built the project, click Build followed by
Download in the PIL block dialog box.

The following table summarizes the effects of the PIL block action options.

PIL Block Action Selection Description

None Do not create the PIL block or PIL
algorithm object code.

Create PIL block Create the algorithm object code
and PIL block. Use this selection to
create a PIL block.

Create PIL
block_build_and_download

Create the algorithm object code
and PIL block, and then build
and download the project to your
processor. Use this selection to
update an existing PIL block in a
model.

Maximum time allowed to build project (s)
Specifies how long, in seconds, the software waits for the project build process
to return a completion message. 1000 s is the default to allow extra time to
complete project builds and code generation.

Project Options
Before you run your model as an executable on any processor, configure the
Project options for the model. By default, the setting for the project options
is Custom, which applies MathWorks software specified compiler and linker
settings for your generated code.

3-56

Setting Real-Time Workshop® Category Options

Compiler options string
To let you determine the degree of optimization provided by the Analog
Devices optimizing compiler, you enter the optimization level to apply to
files in your project. For details about the compiler options, refer to your
VisualDSP++ documentation. When you create new projects, Embedded IDE
Link VS does not set optimization options.

Linker options string
To let you specify the options provided by the Analog Devices linker during
link time, you enter the linker options as a string. For details about the linker
options, refer to your VisualDSP++ documentation. When you create new
projects, Embedded IDE Link VS software does not set linker options.

System stack size (MAUs)
Enter the amount of memory to use for the stack. For more information
on memory requirements, refer to Enable local block outputs on the
Optimization pane of the Configuration Parameters dialog box. Block output
buffers are placed on the stack until the stack memory is fully allocated.
When the stack memory is full, the output buffers go in global memory. Refer
to the online Help system for more information about Real-Time Workshop
software options for configuring and building models and generating code.

Code Generation
From this category, you select options that define the code generation process:

• Profile real-time task execution

• Inline run-time library functions

To enable the real-time execution profile capability, select Profile real-time
task execution. When you select this option, the build process instruments
your code to provide performance profiling at the task level. When you run
your code, the executed code reports the profiling information in both a
graphical presentation and an HTML report form.

To allow you to specify whether the functions generated from blocks in your
model are used inline or by pointers, Inline run-time library functions tells
the compiler to inline each Signal Processing Blockset and Video and Image

3-57

3 Project Generator

Processing Blockset™ function. Using inline functions optimizes your code to
run more efficiently. However, such optimization requires more memory.

As shown in the following figure, the default setting uses inlining to optimize
your generated code.

When you designate a block function as inline, the compiler replaces each call
to a block function with the equivalent function code from the static run-time
library. If your model use the same block four times, your generated code
contains four copies of the function.

While this redundancy uses more memory, inline functions run more quickly
than calls to the functions outside the generated code.

Link Automation
When you use Real-Time Workshop software to build a model to an Analog
Devices processor, Embedded IDE Link VS software makes a connection
between MATLAB software and the VisualDSP++ IDE. MATLAB software

3-58

Setting Real-Time Workshop® Category Options

represents that connection as an adivdsp object. The properties of the
adivdsp object contain information about the IDE instance it refers to,
such as the session and processor it accesses. In this pane, the IDE link
handle name option instructs Embedded IDE Link VS software to export the
adivdsp object created during code generation to your MATLAB workspace
with the name you enter. Replace the default name VDSP_obj with your own
name for the object to export.

Maximum time to complete IDE operations (s)
Specifies how long the software waits for IDE functions, such as read or
write, to return completion messages.

Diagnostic Options
When you generate code from a model, the option in this section determine
what diagnostic messages you see and how the build process responds to
the diagnostics.

Source file replacement
Selects the diagnostic action to take if Embedded IDE Link VS software
detects conflicts when you replace source code with custom code.

The following information can help you use the diagnostic messages in your
work.

• The build operation continues if you select warning and the software
detects custom code replacement problems. You see warning messages as
the build progresses.

• Use the error setting the first time you build your project after you specify
custom code to use. The error messages can help you diagnose problems
with your custom code replacement files.

• Use none when you are sure the replacement process is correct and do not
want to see multiple messages during your build.

3-59

3 Project Generator

Overrun Indicator and Software-Based Timer
Embedded IDE Link VS software includes code that generates interrupts in
models that use multiple clock rates. In the following cases, the overrun
indicator does not work:

• In multirate systems where the rate in the model is not the same as the
base clock rate for your model. In such cases, the timer in Embedded IDE
Link VS software provides the interrupts for setting the model rate.

• In models that do not include ADC or DAC blocks. In such cases, the timer
provides the software interrupts that drive model processing.

Embedded IDE Link VS Default Project Options —
Custom
Although VisualDSP++ software offers standard project configurations,
Release and Debug, models you build with Embedded IDE Link VS software
use Custom for a custom configuration that provides a third combination of
build and optimization.

Project configurations define sets of project build options. When you specify
the build options at the project level, the options apply to all files in your
project. For more information about the build options, refer to your Analog
Devices VisualDSP++ documentation.

The default settings for Custom are the same as the Release project
configuration in VisualDSP++ software, except for the compiler options
discussed in the next section “Default Project Options in Custom” on page
3-60. Custom uses different compiler optimization levels to preserve important
features of the generated code.

Default Project Options in Custom
When you create a new project or build a model to your Analog Devices
processor, your project and model inherit the build configuration settings from
the configuration Custom. The settings in Custom differ from the settings in
the default Debug and Release configurations in VisualDSP++ software in
the compiler settings.

3-60

Setting Real-Time Workshop® Category Options

For the compiler options, Custom uses the Function(-o2) compiler setting.
The VisualDSP++ software default Release configuration uses File(-o3), a
slightly more aggressive optimization model.

For memory configuration, where Release uses the default memory model
that specifies near functions and data, Custom specifies near functions and
data—the -ml1 memory model—because some custom hardware might
not support far data or aggregate data. Your VisualDSP++ documentation
provides complete details on the compiler build options.

You can change the individual settings or the build configuration within
VisualDSP++ IDE. Build configuration options that do not appear on these
panes default to match the settings for the Release build configuration in
VisualDSP++ software.

3-61

3 Project Generator

Optimizing Embedded Code with Target Function Libraries

In this section...

“About Target Function Libraries and Optimization” on page 3-62
“Using a Processor-Specific Target Function Library to Optimize Code”
on page 3-64
“Process of Determining Optimization Effects Using Real-Time Profiling
Capability” on page 3-65
“Reviewing Processor-Specific Target Function Library Changes in
Generated Code” on page 3-65
“Reviewing Target Function Library Operators and Functions” on page 3-68
“Creating Your Own Target Function Library” on page 3-68

About Target Function Libraries and Optimization
A target function library is a set of one or more function tables that define
processor- and compiler-specific implementations of functions and arithmetic
operators. The code generation process uses these tables when it generates
code from your Simulink model.

The Embedded IDE Link VSsoftware registers processor-specific target
function libraries during installation. To use one of the libraries, select the set
of tables that correspond to functions implemented by intrinsics or assembly
code for your processor from the Target function library list in the model
configuration parameters.

After you select the processor-specific library, the model build process uses the
library contents to optimize generated code for that processor. The generated
code includes processor-specific implementations for sum, sub, mult, and
div, and various functions, such as tan or abs, instead of the default ANSI
C instructions and functions. The optimized code enables your embedded
application to run more efficiently and quickly, and in many cases, reduces the
size of the code. For more information about target function libraries, refer
to “Introduction to Target Function Libraries” in the Real-Time Workshop
Embedded Coderdocumentation.

3-62

Optimizing Embedded Code with Target Function Libraries

Code Generation Using the Target Function Library
The build process begins by converting your model and its configuration set to
an intermediate form that reflects the blocks and configurations in the model.
Then the code generation phase starts.

Note Real-Time Workshop refers to the following conversion process as
replacement and it occurs before the build process generates a project.

During code generation for your model, the following process occurs:

1 Code generation encounters a call site for a function or arithmetic operator
and creates and partially populates a target function library entry object.

2 The entry object queries the target function library database for an
equivalent math function or operator. The information provided by the code
generation process for the entry object includes the function or operator
key, and the conceptual argument list.

3 The code generation process passes the target function library entry object
to the target function library.

4 If there is a matching table entry in the target function library, the query
returns a fully-populated target function library entry to the call site,
including the implementation function name, argument list, and build
information

5 The code generation process uses the returned information to generate code.

Within the target function library that you select for your model, the software
searches the tables that comprise the library. The search occurs in the order
in which the tables appear in either the Target Function Library Viewer or
the Target function library tool tip. For each table searched, if the search
finds multiple matches for a target function library entry object, priority level
determines the match to return. The search returns the higher-priority
(lower-numbered) entry.

3-63

3 Project Generator

For more information about target function libraries in the build process, refer
to “Introduction to Target Function Libraries” in the Real-Time Workshop
Embedded Coderdocumentation.

Using a Processor-Specific Target Function Library to
Optimize Code
As a best practice, you should select the appropriate target function library
for your processor after you verify the ANSI C implementation of your project.

Note Do not select the processor-specific target function library if you use
your executable application on more than one specific processor. The operator
and function entries in a library may work on more than one processor within
a processor family. The entries in a library usually do not work with different
processor families.

To use target function library for processor-specific optimization when you
generate code, you must install Real-Time Workshop Embedded Coder
software. Your model must include a Target Preferences block configured
for you intended processor.

Perform the following steps to select the target function library for your
processor:

1 Select Simulation > Configuration Parameters from the model menu
bar. The Configuration Parameters dialog box for your model opens.

2 On the Select tree in the Configuration Parameters dialog box, choose
Real-Time Workshop.

3 Use Browse to select vdsplink_ert.tlc as the System target file.

4 On the Select tree, choose Interface.

5 On the Target function library list, select the processor family that
matches your processor. Then, click OK to save your changes and close
the dialog box.

3-64

Optimizing Embedded Code with Target Function Libraries

With the target function library selected, your generated code uses the specific
functions in the library for your processor.

To stop using a processor-specific target function library, open the Interface
pane in the model configuration parameters. Then, select the C89/C90
(ANSI) library from the Target function library list.

Process of Determining Optimization Effects Using
Real-Time Profiling Capability
You can use the real-time profiling capability to examine the results of
applying the processor-specific library functions and operators to your
generated code. After you select a processor-specific target function library,
use the real-time execution profiling capability to examine the change in
program execution time.

Use the following process to evaluate the effects of applying a processor-specific
target function library when you generate code:

1 Enable real-time profiling in your model. Refer to “Real-Time Execution
Profiling” on page 4-10 in the online Help system.

2 Generate code for your project using the default target function library
C89/C90 ANSI.

3 Profile the code, and save the report.

4 Rebuild your project using a processor-specific target function library
instead of the C89/C90 ANSI library.

5 Profile the code, and save the second report.

6 Compare the profile report from running your application with the
processor-specific library selected to the profile results with the ANSI
library selected in the first report.

Reviewing Processor-Specific Target Function Library
Changes in Generated Code
Use one of the following techniques or tools to see the target function library
elements where they appear in the generated code:

3-65

3 Project Generator

• Review the Code Manually.

• Use Model-to-Code Tracing to navigate from blocks in your model to the
code generated from the block.

• Use a File Differencing Scheme to compare projects that you generate
before and after you select a processor-specific target function library.

Reviewing Code Manually
To see where the generated code uses target function library replacements,
review the file modelname.c . Look for code similar to the following statement

codeopt_tfl_B.UnitDelay3[j] = sharc_mul_s32_s32_s32_sr_sat

(codeopt_tfl_P.Gain4_Gain, codeopt_tfl_B.UnitDelay2[j], 6);

The function sharc_mul_s32_s32_s32_sr_sat is the multiply implementation
function registered in the TI C62x target function library. In this example, the
function performs an optimized multiplication operation. Similar functions
appear for add, and sub. For more information about the arguments in the
function, refer to “Introduction to Target Function Libraries” in the online
Help system.

Using Model-to-Code Tracing
You can use the model-to-code report options in the configuration parameters
to trace the code generated from any block with target function library. After
you create your model and select a target function library, follow these steps
to use the report options to trace the generated code:

1 Open the model configuration parameters.

2 Select Report from the Select tree.

3 In the Report pane, select Create code generation report and
Model-to-code, and then save your changes.

4 Press Ctrl+B to generate code from your model.

The Real-Time Workshop Report window opens on your desktop. For
more information about the report, refer to “Creating and Using a

3-66

Optimizing Embedded Code with Target Function Libraries

Code Generation Report” in the Real-Time Workshop Embedded Coder
documentation.

5 Use model-to-code highlighting to trace the code generated for each block
with target function library applied:

• Right-click on a block in your model and select Real-Time
Workshop > Navigate to code from the context menu.

• Select Navigate-to-code to highlight the code generated from the block
in the report window.

Inspect the code to see the target function operator in the generated code.
For more information, refer to “Tracing Code Generated Using Your
Target Function Library” in the Real-Time Workshop Embedded Coder
documentation in the online Help system.

If a target function library replacement did not occur as you expected, use the
techniques described in “Examining and Validating Function Replacement
Tables” in the Real-Time Workshop Embedded Coder documentation to help
you determine why the build process did not use the function or operator.

Using a File Differencing Scheme
You can also review the target function library induced changes in your
project by comparing projects that you generate both with and without the
processor-specific target function library.

1 Generate your project with the default C89/C90 ANSI target function
library. Use Create Project, Archive Library, or Build for the Build
action in the Embedded IDE Link VS options.

2 Save the project to a new name—newproject1.

3 Go back to the configuration parameters for your model, and select a target
function library appropriate for your processor.

4 Regenerate your project.

5 Save the project with a new name—newproject2

3-67

3 Project Generator

6 Compare the contents of the modelname.c files from newproject1 and
newproject2. The differences between the files show the target function
library induced code changes.

Reviewing Target Function Library Operators and
Functions
Real-Time Workshop Embedded Coder software provides the Target Function
Library viewer to enable you to review the arithmetic operators and functions
registered in target function library tables.

To open the viewer, enter the following command at the MATLAB prompt.

RTW.viewTfl

For details about using the target function library viewer, refer to “Selecting
and Viewing Target Function Libraries” in the online Help system.

Creating Your Own Target Function Library
For details about creating your own library, refer to the following sections in
your Real-Time Workshop Embedded Coder documentation:

• “Introduction to Target Function Libraries”

• “Creating Function Replacement Tables”

• “Examining and Validating Function Replacement Tables”

3-68

Model Reference and Embedded IDE Link™ VS Software

Model Reference and Embedded IDE Link VS Software

In this section...

“How Model Reference Works” on page 3-69
“Using Model Reference with Embedded IDE Link VS Software” on page
3-70
“Configuring Targets to Use Model Reference” on page 3-72

Model reference lets your model include other models as modular components.
This technique is useful because it provides the following capabilities:

• Simplifies working with large models by letting you build large models
from smaller ones, or even large ones.

• Lets you generate code once for all the modules in the entire model and
then only regenerate code for modules that change.

• Lets you develop the modules independently.

• Lets you reuse modules and models by reference, rather than including the
model or module multiple times in your model. Also, multiple models can
refer to the same model or module.

Your Real-Time Workshop documentation provides much more information
about model reference.

How Model Reference Works
Model reference behaves differently in simulation and in code generation. For
this discussion, you need to know the following terms:

• The Top model is the root model block or model. It refers to other blocks or
models. In the model hierarchy, this is the topmost model.

• Referenced models are blocks or models that other models reference, such
as models the top model refers to. All models or blocks below the top model
in the hierarchy are reference models.

3-69

3 Project Generator

The following sections describe briefly how model reference works. More
details are available in your Real-Time Workshop documentation in the
online Help system.

Model Reference in Simulation
When you simulate the top model, Real-Time Workshop software detects that
your model contains referenced models. Simulink software generates code for
the referenced models and uses the generated code to build shared library files
for updating the model diagram and simulation. It also creates an executable
(.mex file) for each reference model that is used to simulate the top model.

When you rebuild reference models for simulations or when you run or update
a simulation, Simulink software rebuilds the model reference files. Whether
reference files or models are rebuilt depends on whether and how you change
the models and on the Rebuild options settings. You can access these
setting through theModel Reference pane of the Configuration Parameters
dialog box.

Model Reference in Code Generation
Real-Time Workshop software requires executables to generate code from
models. If you have not simulated your model at least once, Real-Time
Workshop software creates a .mex file for simulation.

Next, for each referenced model, the code generation process calls make_rtw
and builds each referenced model. This build process creates a library file for
each of the referenced models in your model.

After building all the referenced models, the software calls make_rtw on
the top model, linking to all the library files it created for the associated
referenced models.

Using Model Reference with Embedded IDE Link VS
Software
With few limitations or restrictions, Embedded IDE Link VS software provides
full support for generating code from models that use model reference.

3-70

Model Reference and Embedded IDE Link™ VS Software

Build Action Setting
The most important requirement for using model reference with the Analog
Devices targets is that you must set the Build action (select Configuration
Parameters > Embedded IDE Link VS) for all models referred to in the
simulation to Archive_library.

To set the build action, perform the following steps:

1 Open your model.

2 Select Simulation > Configuration Parameters from the model menus.

The Configuration Parameters dialog box opens.

3 From the Select tree, choose Embedded IDE Link VS.

4 In the right pane, under Runtime, select set Archive_library from the
Build action list.

If your top model uses a reference model that does not have the build action
set to Archive_library, the build process automatically changes the build
action to Archive_library and issues a warning about the change.

Selecting the Archive_library setting removes the following options from
the dialog box:

• Interrupt overrun notification method

• Compiler options string

• Linker options string

• System stack size (MAUs)

• Profile real-time task execution

Target Preferences Blocks in Reference Models
Each referenced model and the top model must include a Target Preferences
block for the correct processor. You must configure all the Target Preferences
blocks for the same processor.

3-71

3 Project Generator

The referenced models need target preferences blocks to provide information
about which compiler and which archiver to use. Without these blocks, the
compile and archive processes do not work.

By design, model reference does not allow information to pass from the top
model to the referenced models. Referenced models must contain all the
necessary information, which the Target Preferences block in the model
provides.

Other Block Limitations
Model reference with Embedded IDE Link VS software does not allow you to
use the following blocks or S-functions in reference models:

• No noninlined S-functions

• No blocks from the Embedded IDE Link VS library (vdsplinklib) (because
these are noninlined S-functions)

Configuring Targets to Use Model Reference
When you create models to use in Model Referencing, keep in mind the
following considerations:

• Your model must use a system target file derived from the ERT or GRT
targets files.

• When you generate code from a model that references other models, you
must configure the top-level model and the referenced models for the same
system target file.

• Real-Time Workshop software builds and Embedded IDE Link VS software
do not support external mode in model reference. If you select the external
mode option, it is ignored during code generation.

• Your TMF must support use of the shared utilities directory, as described
in Supporting Shared Utility Directories in the Build Process in the
Real-Time Workshop documentation.

To use an existing processor, or a new processor, with Model Reference, set
the ModelReferenceCompliant flag for the processor. For information about
setting this option, refer to ModelReferenceCompliant in the online Help
system.

3-72

Model Reference and Embedded IDE Link™ VS Software

If you start with a model that was created prior to MATLAB release R14SP3,
use the following command to set the ModelReferenceCompliant flag to On to
make your model compatible with model reference:

set_param(bdroot,'ModelReferenceCompliant','on')

Code that you generate from Simulink software models by using Embedded
IDE Link VS software automatically include the model reference capability.
You do not need to set the flag.

3-73

3 Project Generator

3-74

4

Verification

• “What is Verification?” on page 4-2

• “Using Processor-in-the-Loop” on page 4-3

• “Real-Time Execution Profiling” on page 4-10

• “System Stack Profiling” on page 4-18

4 Verification

What is Verification?
Verification consists broadly of running generated code on a processor and
verifying that the code does what you intend. The components of Embedded
IDE Link VS software combine to provide tools that help you verify your
code during development by letting you run portions of simulations on your
hardware and profiling the executing code.

Using the Automation Interface and Project Generator components,
Embedded IDE Link VS software offers the following verification functions:

• Processor-in-the-Loop — A technique to help you evaluate how your process
runs on your processor

• Real-Time Task Execution Profiling — A tool that lets you see how the
tasks in your process run in real-time on your processor hardware

• Stack usage profiling — A tool that lets you see how your application
uses the CPU stack

4-2

Using Processor-in-the-Loop

Using Processor-in-the-Loop

In this section...

“Processor-in-the-Loop Overview” on page 4-3
“PIL Block” on page 4-6
“PIL Issues” on page 4-6
“Creating and Using PIL Blocks” on page 4-7

Processor-in-the-loop provides one verification capability in your development
process.

Processor-in-the-Loop Overview
Processor-in-the-loop (PIL) cosimulation is a technique designed to help you
evaluate how well a candidate algorithm, such as a control system, operates
on the actual processor selected for the application.

The term cosimulation reflects a division of labor in which Simulink software
models the plant, while code generated from the controller subsystem runs
on the processor hardware.

During the Real-Time Workshop Embedded Coder code generation process,
you can create a PIL block from one of several Simulink software components
including a model, a subsystem in a model, or subsystem in a library. You
then place the generated PIL block inside a Simulink software model that
serves as the test harness and run tests to evaluate the processor-specific
code execution behavior.

Why Use Cosimulation?

PIL cosimulation is particularly useful for simulating, testing, and validating
a controller algorithm in a system comprising a plant and a controller. In a
classic closed-loop simulation, Simulink software and Stateflow® software
model such a system as two subsystems with the signals transmitted between
them, as shown in the following block diagram:

4-3

4 Verification

Your starting point in developing a plant/controller system is to model
the system as two subsystems in closed-loop simulation. As your design
progresses, you can use Simulink external mode with standard Real-Time
Workshop software targets (such as GRT or ERT) to help you model the
control system separately from the plant.

However, these simulation techniques do not help you account for restrictions
and requirements imposed by the hardware, such as limited memory
resources, or behavior of processor-specific optimized code. When you finally
reach the stage of deploying controller code on the processor hardware, you
may need to make extensive adjustments to the controller system. After you
make these adjustments, your deployed system may diverge significantly from
the original model. Such discrepancies can create difficulties if you need to
return to the original model and change it.

PIL cosimulation addresses these issues by providing an intermediate stage
between simulation and deployment. In a PIL cosimulation, the processor
participates fully in the simulation loop—hence the term processor-in-the-loop.

Definitions

PIL Algorithm

4-4

Using Processor-in-the-Loop

The algorithmic code, such as the control algorithm, to be tested during the
PIL cosimulation. The PIL algorithm resides in compiled object form to allow
verification at the object level.

PIL Application

The executable application to run on the processor. The PIL application is
created by linking the PIL algorithm object code with some wrapper code
(or test harness) that provides an execution framework that interfaces to
the PIL algorithm.

The wrapper code includes the string.h header file so that the memcpy
function is available to the PIL application. The PIL application uses memcpy
to facilitate data exchange between Simulink software and the cosimulation
processor.

Note Whether the PIL algorithm code under test uses string.h is
independent of the use of string.h by the wrapper code, and depends on the
implementation of the algorithm in the generated code.

How Cosimulation Works

In a PIL cosimulation, Real-Time Workshop software generates an executable
application for the PIL algorithm. This code runs (in simulated time) on a
processor platform. The plant model remains in Simulink software without
the use of code generation.

During PIL cosimulation, Simulink software simulates the plant model for
one sample interval and exports the output signals (outn of the plant) to
the processor platform via VisualDSP++ IDE. When the processor platform
receives signals from the plant model, it executes the PIL algorithm for
one sample step. The PIL algorithm returns its output signals (ontn of the
algorithm) computed during this step to Simulink software in inn, via the
VisualDSP++ interface. At this point, one sample cycle of the simulation
is complete and the plant model proceeds to the next sample interval. The
process repeats and the simulation progresses.

4-5

4 Verification

PIL tests do not run in real time. After each sample period, the simulation
halts to ensure that all data has been exchanged between the Simulink
software test harness and object code. You can then check functional
differences between the model and generated code.

PIL Block
The PIL cosimulation block is the Simulink software block interface to PIL
and the interface between the Simulink software model and the executable
application running on the processor. The Simulink software inputs and
outputs of the PIL cosimulation block are configured to match the input and
output specification of the PIL algorithm.

The block is a basic building block that enables you to perform these
operations:

• Select a PIL algorithm

• Build and download a PIL application

• Run a PIL cosimulation

The PIL block inherits the shape and signal names from the parent
subsystem, like those in the following example. This inheritance feature is
convenient for copying the PIL block into the model to replace the original
subsystem for cosimulation.

PIL Issues
Consider the following issues when you work with PIL blocks.

4-6

Using Processor-in-the-Loop

Generic PIL Issues
Refer to the Support Table section in the Real-Time Workshop Embedded
Coder documentation for general PIL feature support information affecting
the PIL block with Link products. See PIL Feature Support and Limitations.

Creating and Using PIL Blocks
Using PIL and PIL blocks to verify your processes begins with a Simulink
software model of your process. To see an example of one such model used
to implement PIL, refer to the demo Getting Started with Application
Development (codegensumdiff.mdl) in the demos for Embedded IDE Link
VS.

Note Your models can have multiple PIL blocks for different subsystems.
You cannot have more than one PIL block for the same subsystem. Including
multiple PIL blocks for the same subsystem causes errors and incorrect
results.

To create and use a PIL block, perform the following tasks:

1 Develop the model of the process to simulate.

Use Simulink software to build a model of the process to simulate. The
blocks in the library vdsplinklib can help you set up the timing and
scheduling for your model.

For information about building Simulink software models, refer to Getting
Started with Simulink in the online Help system.

2 Convert your process to a masked subsystem in your model.

For information about how to convert your process to a subsystem, refer to
Creating Subsystems in Using Simulink or in the online Help system.

3 Open the new masked subsystem and add a target preferences block to
the subsystem.

The block library vdsplinklib contains the Target Preferences block
to add to your system. Configure the Target Preferences block for your

4-7

4 Verification

processor. For details about the options on the Target Preferences block,
refer to the Target Preferences block reference in the online Help system.

4 Configure your model to enable it to generate PIL algorithm code and a PIL
block from your subsystem.

a From the model menu bar, go to Simulation > Configuration
Parameters in your model to open the Configuration Parameters dialog
box.

b Choose Real-Time Workshop from the Select tree. Set the
configuration parameters for your model as required by Embedded IDE
Link VS software. Get more information about setting the Real-Time
Workshop software parameters in “Setting Code Generation Options for
Analog Devices Processors” on page 3-44 in the online Help system.

c Under Target selection, set the System target file to
vdsplink_ert.tlc (PIL requires Real-Time Workshop Embedded Coder
software).

5 Configure the model to perform PIL building and PIL block creation.

a Select Embedded IDE Link VS on the Select tree.

b Under Build action, select Create_processor_in_the_loop_project
from the list to enable PIL block and PIL project generation.

c Click OK to close the Configuration Parameters dialog box.

6 To create the PIL block, right-click the masked subsystem in your model
and select Real-Time Workshop > Build Subsystem from the context
menu.

This step builds the PIL algorithm object code and a PIL block that
corresponds to the subsystem, with the same inputs and outputs. Follow
the progress of the build process in the MATLAB command window.

A new model window opens and the new PIL block appears in it.

7 Copy the new PIL block from the new model to your model, either in
parallel to your masked subsystem to cosimulate the processes, or replace
your subsystem with the PIL block.

4-8

Using Processor-in-the-Loop

To see the PIL block used in parallel to a masked subsystem,
refer to the demo Getting Started with Application Development
(codegensumdiff.mdl) in the demos for Embedded IDE Link VS.

8 Click Simulation > Start to run the PIL simulation and view the results.

4-9

4 Verification

Real-Time Execution Profiling

In this section...

“Overview” on page 4-10
“Profiling Execution by Tasks” on page 4-11
“Profiling Execution By Subsystems” on page 4-14

Overview
Real-time execution profiling in Embedded IDE Link VS software uses a set
of utilities to support profiling for synchronous and asynchronous tasks, or
atomic subsystems, in your generated code. These utilities record, upload, and
analyze the execution profile data.

Execution profiler supports profiling your code two ways:

• Tasks—Profile your project according to the tasks in the code.

• Atomic subsystems—Profile your project according to the atomic
subsystems in your model.

Note To perform execution profiling, you must generate your project from
a model in Simulink modeling environment and you must select the system
target file vdsplink_ert.tlc in the model configuration parameters.

When you enable profiling, you select whether to profile by task or subsystem.

To profile by subsystems, you must configure your model with at least one
atomic subsystem. To learn more about creating atomic subsystems, refer to
“Creating Subsystems” in the online help for Simulink software.

The profiler generates output in the following formats:

• Graphical display that shows task or subsystem activation, preemption,
resumption, and completion. All data appears in a MATLAB graphic with
the data notated by model rates or subsystems and execution time.

4-10

Real-Time Execution Profiling

• An HTML report that provides statistical data about the execution of each
task or atomic subsystem in the running process.

These reports are identical to the reports you see if you use
profile(adivdsp_obj,'execution','report) to view the execution results.
For more information about report formats, refer to profile. In combination,
the reports provide a detailed analysis of how your code runs on the processor.

Use this general process for profiling your project:

1 Create your model in Simulink modeling environment.

2 Enable execution profiling in the configuration parameters for your model.

3 Run your application.

4 Stop your application.

5 Get the profiling results with the profile function.

The following sections describe profiling your projects in more detail.

Profiling Execution by Tasks
To configure a model to use task execution profiling, perform the following
steps:

1 Open the Configuration Parameters dialog box for your model.

2 Select Embedded IDE Link VS from the Select tree. The pane appears as
shown in the following figure.

4-11

4 Verification

3 Select Profile real-time execution. The Profile by list appears.

4 On the Profile by list, select Task to enable real-time task profiling.

5 Assign a name for the object handle in IDE link handle name. Embedded
IDE Link VS software exports this object to your MATLAB workspace with
the name you enter.

6 Click OK to close the Configuration Parameters dialog box.

To view the execution profile for your model:

4-12

Real-Time Execution Profiling

1 Click Incremental build () on the model toolbar to generate, build,
load, and run your code on the processor.

2 To stop the running program, select Debug > Halt in VisualDSP++ IDE or
use halt(objectname) from the MATLAB command prompt. Gathering
profiling data from a running program may yield incorrect results.

3 At the MATLAB command prompt, enter

profile(handlename, execution , report)

to view the MATLAB software graphic of the execution report and the
HTML execution report.

Refer to profile for information about other reporting options.

The following figure shows the profiling plot from running an application
that has three rates—the base rate and two slower rates. The gaps in the
Sub-Rate2 task bars indicate preempted operations.

Refer to Task Profiling Report.

4-13

file://file://T:/Adoc/matlab/doc/src/toolbox/vdsplink/ug/sample_task_profiling_report.html

4 Verification

Profiling Execution By Subsystems
When your models use atomic subsystems, you have the option of profiling
your code based on the subsystems along with the tasks.

To configure a model to use subsystem execution profiling, perform the
following steps:

1 Open the Configuration Parameters dialog box for your model.

2 Select Embedded IDE Link VS from the Select tree. The pane appears as
shown in the following figure.

3 Select Profile real-time execution.

4-14

Real-Time Execution Profiling

4 On the Profile by list, select Atomic subsystem to enable real-time
subsystem execution profiling.

5 Assign a name for the object handle in IDE link handle name. Embedded
IDE Link VS software exports this object to your MATLAB workspace with
the name you enter.

6 Click OK to close the Configuration Parameters dialog box.

To view the execution profile for your model:

1 Click Incremental build () on the model toolbar to generate, build,
load, and run your code on the processor.

2 To stop the running program, select Debug > Halt in VisualDSP IDE, or
use halt(objectname) from the MATLAB command prompt. Gathering
profile data from a running program may yield incorrect results.

3 At the MATLAB command prompt, enter:

profile(handlename, execution , report)

to view the MATLAB software graphic of the execution report and the
HTML execution report.

Refer to profile for more information.

The following figure shows the profiling plot from running an application that
has three subsystems—For Iterator Subsystem, For Iterator Subsystem1, and
Idle Task Subsystem.

4-15

4 Verification

The following figure presents the model that contains the subsystems reported
in the profiling plot.

4-16

Real-Time Execution Profiling

Atomic Subsystem Profiling

To Workspace

simout

Rate Transition 3

Rate Transition 2

Rate Transition 1

Rate Transition

IdleTask
Subsystem

function ()Idle Task1
Idle Task

f()

Gain

.9

For Iterator
Subsystem1

for { ... } In 1Out 1

For Iterator
Subsystem

for { ... }In 1 Out 1

Feedback Gain

0.8

Constant

1

Atomic Subsystem Profiling Report.

4-17

file://file://T:/Adoc/matlab/doc/src/toolbox/vdsplink/ug/sample_subsystem_profiling_report.html

4 Verification

System Stack Profiling

In this section...

“Overview” on page 4-18
“Profiling System Stack Use” on page 4-19

Overview
Along with real-time task execution profiling, the software enables you to
determine how your application uses the processor system stack. Using the
profile method, you can initialize and test the size and usage of the stack.
This capability helps you optimize both the size of the stack and how your
code uses the stack.

To provide stack profiling, profile writes a known pattern to the addresses
in the stack. After you run your application for a while, and then stop your
application, profile examines the contents of the stack addresses. profile
counts each address that no longer contains the known pattern as used. The
total number of address that have been used, compared to the total number of
addresses you allocated, becomes the stack usage profile. This profile process
does not tell you how often any address was changed by your application.

When you use profile to initialize and test the stack operation, the software
returns a report that contains information about stack size, usage, addresses,
and direction. With this information, you can modify your code to use the
stack efficiently. The following program listing shows the stack usage results
from running an application on a simulator.

profile(cc,'stack','report')

Maximum stack usage:

System Stack: 532/1024 (51.95%) MAUs used.

name: System Stack
startAddress: [512 0]

endAddress: [1535 0]

4-18

System Stack Profiling

stackSize: 1024 MAUs
growthDirection: ascending

The following table describes the entries in the report:

Report Entry Units Description

System Stack Minimum Addressable
Unit (MAU)

Maximum number of
MAUs used and the
total MAUs allocated
for the stack.

name String for the stack
name

Lists the name assigned
to the stack.

startAddress Decimal address and
page

Lists the address of
the stack start and the
memory page.

endAddress Decimal address and
page

Lists the address of the
end of the stack and the
memory page.

stackSize Addresses Reports number of
address locations, in
MAUs, allocated for the
stack.

growthDirection Not applicable Reports whether the
stack grows from
the lower address to
the higher address
(ascending) or from
higher to lower
(descending).

Profiling System Stack Use
To profile the system stack operation, perform these tasks in order:

1 Load an application.

2 Set up the stack to enable profiling.

4-19

4 Verification

3 Run your application.

4 Request the stack profile information.

Note If your application initializes the stack with known values when you
run it, stack usage is reported as 100%. The value does not correctly reflect
the stack usage.

Follow these steps to profile the stack as your application interacts with it.
In this example, cc is an existing adivdsp object.

1 Load the application to profile.

2 Use the profile method with the setup input keyword to initialize the
stack to a known state.

profile(cc,'stack','setup')

With the setup input argument, profile writes a known pattern into the
addresses that compose the stack. For all processors, the pattern is A5. As
long as your application does not write the same pattern to the system
stack, profile can report the stack usage correctly.

3 Run your application.

4 Stop your running application. Stack use results gathered from an
application that is running may be incorrect.

5 Use the profile method to capture and view the results of profiling the
stack.

profile(cc,'stack','report')

The following example demonstrates setting up and profiling the stack.
The adivdsp object vd must exist in your MATLAB workspace and your
application must be loaded on your processor. This example comes from a
SHARC ADSP–2136x simulator.

profile(vd,'stack','setup') % Set up processor stack--write A5 to the stack addresses.

4-20

System Stack Profiling

Maximum stack usage:

System Stack: 0/512 (0%) MAUs used.

name: System Stack

startAddress: [785920 1]

endAddress: [786431 1]

stackSize: 512 MAUs

growthDirection: ascending

run(vd)

halt(vd)

profile(vd,'stack','report')

Maximum stack usage:

System Stack: 91/512 (17.77%) MAUs used.

name: System Stack

startAddress: [785920 1]

endAddress: [786431 1]

stackSize: 512 MAUs

growthDirection: ascending

4-21

4 Verification

4-22

5

Function Reference

Constructor (p. 5-2) adivdsp object constructor
IDE Operations (p. 5-3) Work with VisualDSP++ IDE
Processor Operations (p. 5-4) Control processor
Debug Operations (p. 5-5) Perform project and code debugging
Read/Write Operations (p. 5-6) Access memory on the processor
Get Information Operations (p. 5-7) Project and memory operations
Object Information (p. 5-8) Object property information
Status Operations (p. 5-9) Determine processor operation

status
Session Operations (p. 5-10) Manage VisualDSP++ sessions
Verification (p. 5-11) Functions that help verify code

performance

5 Function Reference

Constructor
adivdsp Create object to session in

VisualDSP++ IDE

5-2

IDE Operations

IDE Operations
activate Make specified project, file, or

configuration active
add Add file or data type to active project
build Build or rebuild current project
cd Set IDE working directory
close Close file in IDE window
dir Files and directories in current IDE

window
new New text, project, or configuration

file
open Open specified file
remove Remove file from active project in

IDE window
save Save file
visible Visibility of IDE window

5-3

5 Function Reference

Processor Operations
halt Halt program execution by processor
load Load file into processor
profile Code execution profile and stack

usage information
reset Stop program execution and reset

processor
run Execute program loaded on processor

5-4

Debug Operations

Debug Operations
delete Remove breakpoint
insert Insert breakpoint in file

5-5

5 Function Reference

Read/Write Operations
read Read data from processor memory
write Write data to processor memory

block

5-6

Get Information Operations

Get Information Operations
address Return address and memory type of

specified symbol
info Property names and values for active

session

5-7

5 Function Reference

Object Information
display Properties of adivdsp object

5-8

Status Operations

Status Operations
isrunning Determine whether processor is

executing process
isvisible Determine if IDE is running on

desktop and window is open

5-9

5 Function Reference

Session Operations
listsessions List existing sessions

5-10

Verification

Verification
profile Code execution profile and stack

usage information

5-11

5 Function Reference

5-12

6

Functions — Alphabetical
List

activate

Purpose Make specified project, file, or configuration active

Syntax activate(vd,'my_project.dpj','project')
activate(vd,'my_file','text')
activate(vd,'my_config','buildcfg')

Description activate(vd,'my_project.dpj','project') uses handle vd
to activate the project named my_project.dpj in the IDE. If
my_project.dpj does not exist in the IDE, MATLAB software issues an
error that explains that the specified project does not exist.

VisualDSP++ IDE allows you to have two or more projects with the
same name open at the same time, such as c:\try11\try11.dpj and
c:\try12\try11.dpj. If you use the following function to activate the
project try11.dpj at the command prompt, where you do not provide
the full path to the project:

activate(vd,'try11.dpj')

Embedded IDE Link VS software cannot tell which project named
try11.dpj to activate and may not activate the correct one. The
following steps describe how the software decides which project to
activate.

1 Search the current VisualDSP++ IDE directory to find the first
project with the specified name. If the search finds the project, the
software activates the project and returns.

2 If the specified project is not found in the IDE, search the MATLAB
path to find a project with this name. If the search finds the project,
the software activates the project and returns.

3 If Embedded IDE Link VS software search cannot find a project with
the specified name in the VisualDSP++ IDE or on the MATLAB path,
the software returns an error saying it could not find the specified
project.

6-2

activate

activate(vd,'my_file','text') If the document window is open, this
command makes the file my_file active in the document window. If the
document window is closed, MATLAB returns an error explaining that
the document window is closed, and does not activate any file. If the
specified file does not exist in the project, MATLAB returns an error.
activate supports the text file extensions on the following list:

• .txt

• .c

• .html

• .xml

activate(vd,'my_config','buildcfg')If the IDE application is open,
and it contains an active project, activate makes build configuration
my_config the active configuration in the IDE. Otherwise, MATLAB
returns an error message stating that there is no active project and it
could not active the specified build configuration.

See Also new

remove

6-3

add

Purpose Add file or data type to active project

Syntax add(vd,'my_file')

Description add(vd,'my_file') adds the file my_file to the active project from the
current MATLAB working directory. If you do not have an active project
in the IDE, MATLAB returns an error message and does not add the
file. You can specify the file by name, if the file is in your MATLAB or
Embedded IDE Link VS software working directory, or provide the fully
qualified path to the file when the file is not in your working directories.

To add a file add.txt that is in your MATLAB working directory to the
IDE, use the following command:

add(vd,'add.txt');

where vd is the handle for your vdsplink object. If the file add.txt is
not in either working directory, the command changes to include the
full path to the file:

add(vd,'fullpathtofile\add.txt');

You can add files of all types that the IDE supports. The following table
shows the supported file types.

Supported File Type File Extension

ANSI C/C++ source files *.cpp, *.c, *.cxx, *.h,
*.hpp, *.hxx

Assembly source files *.asm, *.dsp

Object and Library files *.doj, *.dlb

Linker Command files *.ldf

VisualDSP++ support file *.vdk

See Also activate

cd

6-4

add

open

remove

6-5

address

Purpose Return address and memory type of specified symbol

Syntax a = address(vd,'symbolstring')

Description a = address(vd,'symbolstring') returns the address and memory
type values for the symbol identified by symbolstring. For address to
work, symbolstring must be a symbol in the symbol table for your
active project. There must be a linker command file (lcf) in your project.

See Also read

write

6-6

adivdsp

Purpose Create object to session in VisualDSP++ IDE

Syntax vd = adivdsp
vd = adivdsp('propname1',propvalue1,'propname2',propvalue2,
,'timeout',value)
vd = adivdsp('my_session')

Description vd = adivdsp opens the VisualDSP++ software for the most recent
active session, if the IDE is not running. After that, it creates an object
vd that references the newly-opened session. If the IDE is running,
adivdsp returns object vd that connects to the active session in the IDE.

adivdsp creates an interface between MATLAB software and Analog
Devices VisualDSP++ software. If this is the first time you have used
adivdsp, you must supply a session name as an input argument (refer
to the next syntax).

Note The output (left-hand argument) object name you provide for
adivdsp cannot begin with an underscore, such as _vd.

vd = adivdsp('sessionname','name','procnum','number',...)
returns an object handle vd that you use to interact with a processor
in the IDE from MATLAB.

You use the debug methods (refer to “Debug Operations” on page 5-5 for
the methods available) with this object to access memory and control
the execution of the processor. adivdsp also enables you to create an
array of objects for a multiprocessor board, where each object refers
to one processor on the board. When vd is an array of objects, any
method called with vd as an input argument is sent sequentially to all
processors connected to the adivdsp object. VisualDSP++ software
provides the communication between the IDE and the processor.

Parameters that you pass as input arguments to adivdsp are
interpreted as object property definitions. Each property definition
consists of a property name followed by the desired property value

6-7

adivdsp

(often called a PV, or property name/property value, pair). Although
you can define any adivdsp object property when you create the object,
there are several important properties that you must provide during
object construction. These properties must be properly delineated when
you create the object. The required input arguments are

• sessionname— Specifies the session to connect to. This session must
exist in the session list. adivdsp does not create new sessions. The
resulting object refers to a processor in sessionname. To see the list
of sessions, use listsessions at the MATLAB command prompt.

• procnum— Specifies the processor to connect to in sessionname. The
default value for procnum is 0 for the first processor on the board.
If you omit the procnum argument, adivdsp connects to the first
processor. procnum can also be an array of processor indexes on a
multiprocessor board. Using an array results in the adivdsp object vd
being an array of handles that correspond to the specified processors.

After you build the adivdsp object vd, you can review the object
property values with get, but you cannot modify the sessionname and
procnum property values.

To connect to the active session in IDE, omit the sessionname property
in the syntax. If you do not pass sessionname as an input argument,
the object defaults to the active session in the IDE.

Use listsessions to determine the number for the desired DSP
processor(s). If your IDE session is single processor or to connect to
processor zero, you can omit the procnum property definition. If procnum
is not passed as an input argument, the object defaults to procnum =
0 (zero-based).

vd =
adivdsp('propname1',propvalue1,'propname2',propvalue2,
,'timeout',value) sets the global time-out value to value in vd.
MATLAB waits for the specified time-out value to get a response from
the IDE application. If the IDE does not respond within the allotted
time-out period, MATLAB exits from the evaluation of this function.

6-8

adivdsp

vd = adivdsp('my_session') connects to my_session if the session
exists in the session list and the IDE is not already running. In this case,
MATLAB starts VisualDSP++ IDE for the session named my_session.

The following list shows some other possible cases and results of using
adivdsp to construct an object that refers to my_session.

• If my_session does not exist in the session list and the IDE is not
already running, MATLAB returns an error stating that my_session
does not exist in the session list.

• When my_session is the current active session and the IDE is
already running, MATLAB connects to the IDE for this session.

• If my_session is not the current active session, but exists in the
session list, and the IDE is already running, MATLAB displays a
dialog box asking if the you want to switch to my_session. If you
choose to switch to my_session, all existing handles you have to other
sessions in the IDE become invalid. To connect to the other sessions
you need to use adivdsp to recreate the objects for those sessions.

• If my_session does not exist in the session list and the IDE is already
running, MATLAB returns an error, explaining that the session
my_session does not exist in the session list.

Examples These examples demonstrate some of the operation of adivdsp.

vd = adivdsp('sessionname','my_session','procnum',0);

returns a handle to the first DSP processor for session my_session.

vd =
adivdsp('sessionname','my_multiproc_session','procnum',[0
1]);

returns a 1-by-2 array of handles to the first and second DSP processor
for the multiprocessor session my_multiproc_session. vd(1) is the
handle for first processor (0) vd(2) is the handle for second processor (1).

6-9

adivdsp

vd = adivdsp without input arguments constructs the object vd
with the default property values, returning a handle to the first DSP
processor for the active session in the IDE.

vd = adivdsp('sessionname','my_session'); returns a handle to
the first DSP processor for the session my_session.

See Also listsessions

6-10

build

Purpose Build or rebuild current project

Syntax build(vd)
build(vd,timeout)
build(vd,'all')
build(vd,'all',timeout)

Description build(vd) incrementally builds the active project. Incremental builds
recompile only source files in your project that you changed or added
after the most recent build. build uses the file time stamp to determine
whether to recompile a file. After recompiling the source files, build
links the files to make a new program file.

build(vd,timeout) incrementally builds the active project with a time
limit for how long MATLAB waits for the build process to complete.
timeout defines the upper limit in seconds for the period the build
routine waits for confirmation that the build process is finished. If the
build process exceeds the time-out period, control returns to MATLAB
immediately with a time-out error. Usually, build causes the processor
to initiate a restart, even if it reaches the time-out limit. The time-out
error in MATLAB indicates that confirmation was not received before
the time-out period expired. The build action continues. Generally, the
build and link process finishes successfully in spite of the time-out error.

build(vd,'all') rebuilds all the files in the active project.

build(vd,'all',timeout) rebuilds all the files in the active project
applying the time-out limit on how long MATLAB waits for the build
process to complete.

See Also isrunning

open

6-11

cd

Purpose Set IDE working directory

Syntax wd = cd(vd)
cd (vd,'directory')

Description wd = cd(vd) returns the current IDE working directory, where vd is an
adivdsp object that refers to the VisualDSP++ window, or a vector of
objects.

cd (vd,'directory') sets the IDE working directory to 'directory'.
'directory' can be a path string relative to your current working
directory, or an absolute path. The intended directory must exist. cd
does not create a new directory. Setting the IDE directory does not
affect your MATLAB working directory.

cd alters the default directory for open and load. Loading a new
workspace file also changes the working directory for the IDE.

See Also dir

load

open

6-12

close

Purpose Close file in IDE window

Note close(, text) produces an error.

Syntax close(vd,'filename','filetype')

Description close(vd,'filename','filetype') closes the file named 'filename'
in the active project in the vd IDE window. If filename is not an open
file in the IDE, MATLAB returns a warning message. When you enter
null value [] for filename, close closes the current active file in the
IDE. filename must match exactly the name of the file to close. If you
enter all for the filename, close closes all files in the project that are
of the type specified by filetype.

Note close does not save the file before closing it and it does not
prompt you to save the file. You lose changes you made after the
most-recent save operation. Use save to preserve your changes before
you close the file.

Parameter 'filetype' is optional, with the default value of text .
Allowed 'filetype' strings are project , projectgroup , text ,
and workspace . Here are some examples of close operation
commands. In these examples, vd is an adivdsp object handle to the
IDE.

close(vd,'all','project')— Closes all open project files

close(vd,'my.dpj','project')— Closes the open project my.dpj

close(vd,[],'project')— Closes the active open project

close(vd,'all','projectgroup')— Close all open project groups

close(vd,'myg.dpg','projectgroup') — Closes the project group
myg.dpg

6-13

close

close(vd,[],'projectgroup')— Closes the active project group

close(vd,'all','text') — Close all text files

close(vd,'text.c','text')— Closes the text file text.c

close(vd,[],'text') — Closes the active text file

See Also add

open

save

6-14

delete

Purpose Remove breakpoint

Syntax delete(vd,addr)
delete(vd,'filename','linenumber')
delete(vd,'all')

Description delete(vd,addr) removes a breakpoint located at the memory address
addr of the processor. Provide the address input value in hexadecimal
format, such as 0x244fc, or 0x0014.

delete(vd,'filename','linenumber') removes the breakpoint
located at the line number 'linenumber' in the file 'filename' for
the processor.

delete(vd,'all') removes all breakpoints in the current project
source files.

See Also insert

6-15

dir

Purpose Files and directories in current IDE window

Syntax dir(vd)
d = dir(vd)

Description dir(vd) lists the files and directories in the IDE working directory,
where vd is the handle to the IDE. vd can be either a single handle,
or a vector of handles. When vd is a vector, dir returns the files and
directories for each handle.

d = dir(vd) returns the list of files and directories as an M-by-1
structure in d with the following fields for each file and directory, as
shown in the following table.

Field Name Description

name Name of the file or directory.
date Date of most recent file or directory

modification.
bytes Size of the file in bytes. Directories return 0

for the number of bytes.
isdirectory 0 if this is a file, 1 if this is a directory.

To view the entries in d, use an index in the command at the MATLAB
prompt, as shown by the following examples.

• d(3) returns the third element in the structure.

• d(10) returns the tenth element in the structure d.

• d(4).date returns the date field value for the fourth structure
element.

See Also cd

open

6-16

display

Purpose Properties of adivdsp object

Syntax display(vd)

Description display(vd) displays the properties and property values of the adivdsp
object vd.

For example, when you create vd associated with the session
Testsession and the processor is the ADSP-BF533, display(vd)
returns the following information in the MATLAB command window:

display(vd)

ADIVDSP Object:
Session name : Testsession
Processor name : ADSP-BF533
Processor type : ADSP-BF533
Processor number : 0
Default timeout : 10.00 secs

See Also get in the MATLAB Function Reference

6-17

halt

Purpose Halt program execution by processor

Syntax halt(vd)
halt(vd,timeout)

Description halt(vd) stops the program running on the processor. After you issue
this command, MATLAB waits for a response from the processor that
the processor has stopped. By default, the wait time is 10 seconds. If
10 seconds elapses before the response arrives, MATLAB returns an
error. In this syntax, the time-out period defaults to the global time-out
period specified in vd. Use get(vd,'timeout') to determine the global
time-out period. However, the processor usually stops in spite of the
error message.

To resume processing after you halt the processor, use run. Also, the
read(vd,'pc') function can determine the memory address where the
processor stopped after you use halt.

halt(vd,timeout) immediately stops program execution by the
processor. After the processor stops, halt returns to the host. timeout
defines, in seconds, how long the host waits for the processor to stop
running.

timeout defines the maximum time the routine waits for the processor
to stop. If the processor does not stop within the specified time-out
period, the routine returns with a time-out error.

Examples

Use one of the provided demonstration programs to show how halt
works. From the VisualDSP++ demonstration programs, load and run
one of the demonstration projects.

At the MATLAB prompt, create an object that refers to a VisualDSP++
IDE session.

vd = adivdsp

Check whether the program is running on the processor.

6-18

halt

isrunning(vd)

ans =

1

vd.isrunning % Alternate syntax for checking the run status.

ans =

1

halt(vd) % Stop the running application on the processor.

isrunning(vd)

ans =

0

Issuing the halt stops the process on the processor. Checking in
VisualDSP++ IDE confirms that the process has stopped.

See Also isrunning

reset

run

6-19

info

Purpose Property names and values for active session

Syntax objinfo = info(vd)

Description objinfo = info(vd) returns the property names and values associated
with the active session and the processors for that session. The
following table shows the properties info returns for vd and provides
brief descriptions of the properties.

Property
Name

Data
Type

Description

procname String Provides the name of the processor.
proctype String Provide the platform name the session

uses.
revision String Reports the silicon revision of the

processor. Does not apply to simulators.

Examples When you have an adivdsp object vd, info provides information about
the object.

vd = adivdsp('sessionname','Testsession')

ADIVDSP Object:
Session name : Testsession
Processor name : ADSP-BF533
Processor type : ADSP-BF533
Processor number : 0
Default timeout : 10.00 secs

objinfo = info(vd)

objinfo =

procname: 'ADSP-BF533'
proctype: 'ADSP-BF533'

6-20

info

revision: ''

objinfo.procname

ans =

ADSP-BF533

See Also display

adivdsp

6-21

insert

Purpose Insert breakpoint in file

Syntax insert(vd,addr)
insert(vd,'filename','linenumber')

Description insert(vd,addr) inserts a breakpoint at the memory address
specified by the addr parameter.vd identifies the session that adds the
breakpoint.

insert(vd,'filename','linenumber') inserts a breakpoint at the
line 'linenumber' in the file 'filename'.

See Also address

delete

run

6-22

isrunning

Purpose Determine whether processor is executing process

Syntax isrunning(vd)

Description isrunning(vd) returns 1 when the processor is executing a program.
When the processor is halted, isrunning returns 0.

Examples isrunning lets you determine whether the processor is running. After
you load a program to the processor, use isrunning to verify that the
program is running.

vd = adivdsp

ADIVDSP Object:
Session name : Testsession
Processor name : ADSP-BF533
Processor type : ADSP-BF533
Processor number : 0
Default timeout : 10.00 secs

visible(vd,1)
load(vd,'adi.dxe','program')
run(vd)
isrunning(vd)

ans =

1
halt(vd)
isrunning(vd)

ans =

0

6-23

isrunning

See Also halt

load

run

6-24

isvisible

Purpose Determine if IDE is running on desktop and window is open

Syntax isvisible(vd)

Description isvisible(vd) determines whether the VisualDSP++ IDE is running
on the desktop and the window is open. isvisible returns either
1 indicating that the IDE is running and the window is open, or 0
indicating that either the IDE is running in the background or is not
running.

See Also visible

6-25

listsessions

Purpose List existing sessions

Syntax list = listsessions
list = listsessions('verbose')

Description list = listsessions returns list that contains a listing of all of the
sessions by name currently in the development environment.

list = listsessions('verbose') adds the optional input argument
verbose. When you include the verbose argument, listsessions
returns a cell array that contains one row for each existing session.
Each row has three columns — processor type, platform name, and
processor name.

See Also adivdsp

6-26

load

Purpose Load file into processor

Syntax load(vd,'filename',timeout)
load(,timeout)

Description load(vd,'filename',timeout) transfers file 'my_file.dxe' to the
processor. filename can include a full path to the file, or the name of
a file that is in the current working directory of VisualDSP++ IDE.
Use the function cd to check or modify the VisualDSP++ working
directory. Use this function only with program files that you created by
a VisualDSP++ build process. When you issue the load command, the
command waits for the period defined by timeout in vd for the process
to complete—ten seconds.

load(,timeout) adds the optional parameter timeout that defines
how long, in seconds, MATLAB waits for the specified load process to
complete. If the time-out period expires before the load process returns a
completion message, MATLAB generates an error and returns. Usually
the program load process works correctly in spite of the error message.

See Also cd

dir

open

6-27

new

Purpose New text, project, or configuration file

Note new(,'text') produces an error.

Syntax new(vd,'name','type')

Description new(vd,'name','type') creates a new file, project, or build
configuration in the active project. Input argument name specifies the
name assigned to identify the new file, project, or configuration.

When you are creating a new file or project, name is a filename that can
include the full path to the new file. If you omit the path, new creates
the new file or project in your current VisualDSP++ working directory.

To define the kind of entity to create, type accepts the strings shown in
the following table.

Type String Description

text Create an empty text file in the current
session.

project Create a new executable project in the
current session. Sometimes this is called
a DSP executable file.

projlib Create a new library project in the
current session.

buildcfg Create a build configuration in the active
project.

Examples new(vd,'my_project.dpj','project',project_type) creates a new
project 'my_project.dpj' of type project_type. The project_type
argument is optional; the default project type is DSP executable file.

new(vd,'my_config','buildcfg') creates a new build configuration,
named my_config, in the active project.

6-28

new

See Also activate

close

save

6-29

open

Purpose Open specified file

Note open(,'text') produces an error.

Syntax open(vd,'filename')
open(,'filetype')

Description open(vd,'filename') opens file filename in the IDE. If you specify the
file extension in filename, open opens the file of that type. If you omit
the file extension from the name, open assumes the file to open is a text
file. The following table presents the possible file types and extensions.

File Type Extension Description

text txt, c, asm, cpp, h, and
all file extensions not
listed elsewhere in this
table

Text file

project dpj VisualDSP++ IDE project
projectgroup dpg Project group in

VisualDSP++ IDE project
workspace None Workspace in

VisualDSP++ IDE project

If the file to open does not exist in the current project or directory path,
MATLAB returns a warning and returns control to MATLAB.

open(,'filetype') identifies the type of file to open. This can be
useful when your project includes files of different types that have
the same name or when you want to open a project, project group, or
workspace. Using the input argument filetype overrides the file type
defined by the file extension in the file name. The preceding table
defines the valid file type extensions.

6-30

open

open(,timeout) adds the optional parameter timeout that defines
how long, in seconds, MATLAB waits for the specified load process to
complete. If the time-out period expires before the load process returns
a completion message, MATLAB returns an error. Usually the program
load process works correctly in spite of the error message.

See Also cd

dir

load

new

6-31

profile

Purpose Code execution profile and stack usage information

Syntax profile(vd, execution ,'report')
profile(vd,'stack',action)

Description profile(vd, execution ,'report') returns execution profile
measurements from the generated code. The report input argument is
required. When you select Profile real-time execution in the model
configuration parameters, and then build and run your model on a
processor, profile accesses the report of the process execution.

Note Real-time task execution profiling works with hardware only.
Simulators do not support the profiling feature.

To use profile to assess how your program executes in real-time,
complete the following tasks with a Simulink model:

1 Enable real-time execution profiling in the configuration parameters
and build your model.

2 Select whether to profile by task or subsystem.

3 Build your model.

4 Download your program to the processor.

5 Run the program on the processor.

6 Stop the running program.

7 Use profile at the MATLAB command prompt to access the profiling
reports.

The HTML report contains the sections described in the following table.

6-32

profile

Section Heading Description

Worst case task
turnaround times

Maximum task turnaround time for each
task since model execution started.

Maximum number of
concurrent overruns
for each task

Maximum number of concurrent task
overruns since model execution started.

Analysis of profiling
data recorded over
nnn seconds.

Profiling data was recorded over nnn seconds.
The recorded data for task turnaround times
and task execution times is presented in the
table below this heading.

Task turnaround time is the elapsed time between starting and
finishing the task. If the task is not preempted, task turnaround time
equals the task execution time.

Task execution time is the time between task start and finish when the
task is actually running. It does not include time during which the task
may have been preempted by another task.

Note Task execution time cannot be measured directly. Task profiling
infers the execution time from the task start and finish times, and the
intervening periods during which the task was preempted by another
task.

The execution time calculations do not account for processor time
consumed by the scheduler while switching tasks. In cases where
preemption occurs, the reported task execution times overestimate the
true task execution time.

Task overruns occur when a timer task does not complete before the
same task is scheduled to run again. Depending on how you configure
the real-time scheduler, a task overrun may be handled as a real-time
failure. Alternatively, you might allow a small number of task overruns
to accommodate cases where a task occasionally takes longer than

6-33

profile

normal to complete. If a task overrun occurs, and the same task is
scheduled to run again before the first overrun has been cleared,
concurrent task overruns are said to have occurred.

Here is a sample of the HTML profiling report—Task execution profile
report.

profile(vd,'stack',action) returns the CPU stack usage from your
application. action defines the stack profiling operation and accepts
one of the strings in the following table:

action String Description

setup Initializes the CPU stack with
a known pattern—0xA5 on all
processors.

report Returns the report of the
stack usage from running your
application.

You cannot assign the stack profile report to an output variable. The
MATLAB structure output from profiling the system stack has the
elements described in the following table.

Report Entry Units Description

System Stack Minimum Addressable
Unit (MAU)

Maximum number of
MAUs used and the
total MAUs allocated
for the stack.

name String for the stack
name

Lists the name
assigned to the stack.

startAddress Decimal address and
page

Lists the address of
the stack start and the
memory page.

6-34

profile

Report Entry Units Description

endAddress Decimal address and
page

Lists the address of the
end of the stack and
the memory page.

stackSize Addresses Reports number of
address locations, in
MAUs, allocated for
the stack.

growthDirection Not applicable Reports whether the
stack grows from
the lower address to
the higher address
(ascending) or from
higher to lower
(descending).

To use profile to assess how your program uses the stack, complete
the following tasks with a Simulink model or manually written code:

1 Build your model with real-time execution profiling enabled in the
configuration parameters. Skip this step for custom code.

2 Download your program to the processor.

3 Run the program on the processor.

4 Stop the running program.

5 Use profile at the MATLAB command prompt to access the profiling
reports.

You cannot assign the stack profile report to an output variable. For
more information about using stack profiling, refer to “System Stack
Profiling” on page 4-18.

6-35

profile

See Also load

run

6-36

read

Purpose Read data from processor memory

Syntax mem = read(vd,address)
mem = read(…,datatype)
mem = read(…,count)
mem = read(…,memorytype)
mem = read(…,timeout)

Description mem = read(vd,address) returns a block of data values from the
memory space of the DSP processor referenced by vd. The block to read
begins from the DSP memory location given by the input parameter
address. The data is read starting from address without regard to
type-alignment boundaries in the DSP. Conversely, the byte ordering
defined by the data type is automatically applied.

address is a decimal or hexadecimal representation of a memory
address in the DSP. In all cases, the full memory address consist of
two parts:

• The start address

• The memory type

You can use a numeric vector representation of the address (see below)
to define the memory type value explicitly .

Alternatively, the vd object has a default memory type value that is
applied when the memory type value is not explicitly incorporated
in the passed address parameter. In DSP processors with only a
single memory type, it is possible to specify all addresses using the
abbreviated (implied memory type) format by setting the vd object
memory type value to zero.

Note You cannot read data from processor memory while the processor
is running.

6-37

read

Provide the address parameter either as a numerical value that is a
decimal representation of the DSP memory address, or as a string that
read converts to the decimal representation of the start address. (Refer
to function hex2dec in the MATLAB Function Reference. read uses
hex2dec to convert the hexadecimal string to a decimal value).

The examples in the following table demonstrate how read uses the
address parameter:

address
Parameter Value

Description

131082 Decimal address specification. The memory
start address is 131082 and memory type is 0.
This is the same as specifying [131082 0].

[131082 1] Decimal address specification. The memory
start address is 131082 and memory type is 1.

'2000A' Hexadecimal address specification provided as
a string entry. The memory start address is
131082 (converted to the decimal equivalent)
and memory type is 0.

It is possible to specify address as a cell array. You can use a
combination of numbers and strings for the start address and memory
type values. For example, the following are valid addresses from cell
array myaddress:

myaddress1 myaddress1{1} = 131072; myadddress1{2} =
'Program(PM) Memory';

myaddress2 myaddress2{1} = '20000'; myadddress2{2} =
'Program(PM) Memory';

myaddress3 myaddress3{1} = 131072; myaddress3{2} = 0;

mem = read(…,datatype) where the input argument datatype defines
the interpretation of the raw values read from DSP memory. Parameter
datatype specifies the data format of the raw memory image. The data
is read starting from address without regard to data type alignment

6-38

read

boundaries in the DSP. The byte ordering defined by the data type is
automatically applied. This syntax supports the following MATLAB
data types:

MATLAB Data Type Description

double IEEE® double-precision floating
point value

single IEEE single-precision floating
point value

uint8 8-bit unsigned binary integer
value

uint16 16-bit unsigned binary integer
value

uint32 32-bit unsigned binary integer
value

int8 8-bit signed two’s complement
integer value

int16 16-bit signed two’s complement
integer value

int32 32-bit signed two’s complement
integer value

read does not coerce data type alignment. Some combinations of
address and datatype will be difficult for the processor to use.

mem = read(…,count) adds the count input parameter that defines
the dimensions of the returned data block mem. To read a block of
multiple data values, specify count to determine how many values
to read from address. count can be a scalar value that causes read
to return a column vector that has count values. You can perform
multidimensional reads by passing a vector for count. The elements
in the input vector of count define the dimensions of the returned data
matrix. The memory is read in column-major order. count defines the

6-39

read

dimensions of the returned data array mem as shown in the following
table.

• n — Read n values into a column vector.

• [m,n] — Read m-by-n values into m by n matrix in column-major
order.

• [m,n,...] — Read a multidimensional matrix m-by-n-by…of values
into an m-by-n-by…array.

To read a block of multiple data values, specify the input argument
count that determines how many values to read from address.

mem = read(…,memorytype) adds an optional input argument
memorytype. Object vd has a default memory type value 0 that read
applies if the memory type value is not explicitly incorporated into the
passed address parameter.

In processors with only a single memory type, it is possible to specify
all addresses using the implied memory type format by setting the vd
memorytype property value to zero. Blackfin and SHARC processors use
different memory types. Blackfin processors have one memory type.
SHARC processors provide five types. The following table shows the
memory types for both processor families.

String Entry for
memorytype

Numeric
Entry for
memorytype

Processor Support

’program(pm) memory’ 0 Blackfin and SHARC
’data(dm) memory’ 1 SHARC
’data(dm) short
word memory’

2 SHARC

’external data(dm)
byte memory’

3 SHARC

’boot(prom) memory’ 4 SHARC

6-40

read

mem = read(…,timeout) adds the optional parameter timeout that
defines how long, in seconds, MATLAB waits for the specified read
process to complete. If the time-out period expires before the read
process returns a completion message, MATLAB returns an error and
returns control to the MATLAB command prompt. Usually the read
process works correctly in spite of the error message.

Examples This example reads one 16–bit integer from memory on the processor.

mlvar = read(vd,131072,'int16')

131072 is the decimal address of the data to read.

You can read more than one value at a time. This read command
returns 100 32–bit integers from the address 0x20000 and plots the
result in MATLAB.

data = read(vd,'20000','int32',100)
plot(double(data))

See Also write

6-41

remove

Purpose Remove file from active project in IDE window

Syntax remove(vd,'filename','filetype')

Description remove(vd,'filename','filetype') removes the file named filename
from the active project in the vd window of the IDE. If the file does not
exist, MATLAB returns a warning and does not remove any files. The
filetype argument is optional, with the default value of text. Possible
values for filetype are: project and text.

See Also add

cd

open

6-42

reset

Purpose Stop program execution and reset processor

Syntax reset(vd,timeout)

Description reset(vd,timeout) stops the program executing on the processor and
asynchronously performs a processor reset, returning all processor
register contents to their power-up settings. reset returns immediately
after the processor halt.

The timeout is an optional parameter, with the default value set to the
global default value. The timeout determines how long, in seconds,
MATLAB waits for the processor to halt.

See Also halt

load

run

6-43

run

Purpose Execute program loaded on processor

Syntax run(vd)
run(vd,'runopt')
run(…,timeout)

Description run(vd) runs the program file loaded on the referenced processor,
returning immediately after the processor starts running. Program
execution starts from the location of program counter (PC). Usually,
the PC is positioned at the top of the executable file. However, if you
stopped a running program with halt, the PC may be anywhere in the
program. run starts the program from the PC current location.

If vd references more the one processor, each processors calls run in
sequence.

run(vd,'runopt') includes the parameter runopt that defines the
action of the run method. The options for runopt are listed in the
following table.

runopt String Description

run Executes the run and waits to confirm that
the processor is running, and then returns to
MATLAB.

runtohalt Executes the run but then waits until the
processor halts before returning. The halt can
be the result of the PC reaching a breakpoint, or
by direct interaction with VisualDSP++ IDE, or
by the normal program exit process.

run(…,timeout) adds input argument timeout, to allow you to set
the time-out to a value different from the global time-out value. The
timeout value specifies how long, in seconds, MATLAB waits for the
processor to start executing the loaded program before returning.

Most often, the run and runtohalt options cause the processor to
initiate execution, even when a time-out is reached. The time-out

6-44

run

indicates that the confirmation was not received before the time-out
period elapsed.

See Also halt

load

reset

6-45

save

Purpose Save file

Note save(,'text') produces an error.

Syntax save(vd,'filename')
save(vd,'filename','filetype')

Description save(vd,'filename') saves the file named filename in VisualDSP++
IDE. filename must match the name of the file to save and you must
include the file extension. You can save only open files. If you specify
the filename parameter as all, every open file of the defined type is
saved (refer to the filetype parameter in the next syntax). A null
input, [], for filename or no file name saves the current active file (the
file that has focus).

save(vd,'filename','filetype') saves the specified file in
VisualDSP++ IDE.

filetype defines the type of file to save. In the following table you see
examples of save that use the allowed file type definitions—project,
projectgroup, and text.

save Command Description of save
Operation

save(vd,'all','project') Saves all project files
save(vd,'my.dpj','project') Saves the project my.dpj
save(vd,[],'project') Saves the active project
save(vd,'all','projectgroup') Saves all project files in the

project groups
save(vd,'myg.dpg','projectgroup')Saves the project group

myg.dpg

6-46

save

save Command Description of save
Operation

save(vd,[],'projectgroup') Saves the projects in the active
project group

save(vd,'all','text') Save all text files

save(vd,'text.c','text') Saves the text file text.c
save(vd,[],'text') Save the active text file

See Also adivdsp

close

load

6-47

visible

Purpose Visibility of IDE window

Syntax visible(vd,state)

Description visible(vd,state) sets the visibility state of the IDE window defined
by vd. Possible values of state are 0 for not visible, and 1 for visible.

Setting the state to 1 forces the IDE to be visible on the desktop so you
can interact directly with it. Setting to 0 hides the IDE—the IDE runs
in the background. In the not visible state, you interact with the IDE
from the MATLAB command line. When you create an adivdsp object,
the IDE visibility is set to 0 and the IDE is not visible.

See Also info

isvisible

6-48

write

Purpose Write data to processor memory block

Syntax mem = write(vd,address,data)
mem = write(…,datatype)
mem = write(…,memorytype)
mem = write(…,timeout)

Description mem = write(vd,address,data) writes data, a collection of values,
to the memory space of the DSP processor referenced by vd. Input
argument data is a scalar, vector or array of values to write to the
memory of the processor. The block to write begins from the DSP
memory location given by the input parameter address.

The data is written starting from address without regard to
type-alignment boundaries in the DSP. Conversely, the byte ordering of
the data type is automatically applied.

Note You cannot write data to processor memory while the processor
is running.

address is a decimal or hexadecimal representation of a memory
address in the processor. In all cases, the full memory address consist of
two parts: the start address and the memory type. The memory type
value can be explicitly defined using a numeric vector representation
of the address (see below).

Alternatively, the vd object has a default memory type value which is
applied if the memory type value is not explicitly incorporated into
the passed address parameter. In DSP processors with only a single
memory type, by setting the vd object memory type value to zero it is
possible to specify all addresses using the abbreviated (implied memory
type) format.

You provide the address parameter either as a numerical value that is
a decimal representation of the DSP memory address, or as a string
that write converts to the decimal representation of the start address.

6-49

write

(Refer to function hex2dec in the MATLAB Function Reference that
read uses to convert the hexadecimal string to a decimal value).

To demonstrate how write uses address, here are some examples of
the address parameter:

address
Parameter
Value

Description

131082 Decimal address specification. The memory start
address is 131082 and memory type is 0. This is the
same as specifying [131082 0].

[131082 1] Decimal address specification. The memory start
address is 131082 and memory type is 1.

'2000A' Hexadecimal address specification provided as a string
entry. The memory start address is 131082 (converted
to the decimal equivalent) and memory type is 0.

It is possible to specify address as a cell array, in which case you can
use a combination of numbers and strings for the start address and
memory type values. For example, the following are valid addresses
from cell array myaddress:

myaddress1 myaddress1{1} = 131072; myadddress1{2} =
'Program(PM) Memory';

myaddress2 myaddress2{1} = '20000'; myadddress2{2} =
'Program(PM) Memory';

myaddress3 myaddress3{1} = 131072; myaddress3{2} = 0;

mem = write(…,datatype) where the input argument datatype
defines the interpretation of the raw values written to DSP memory.
Parameter datatype specifies the data format of the raw memory
image. The data is written starting from address without regard to
data type alignment boundaries in the DSP. The byte ordering of the
data type is automatically applied. The following MATLAB data types
are supported:

6-50

write

MATLAB Data Type Description

double IEEE double-precision floating point value
single IEEE single-precision floating point value
uint8 8-bit unsigned binary integer value
uint16 16-bit unsigned binary integer value
uint32 32-bit unsigned binary integer value
int8 8-bit signed two’s complement integer

value
int16 16-bit signed two’s complement integer

value
int32 32-bit signed two’s complement integer

value

write does not coerce data type alignment. Some combinations of
address and datatype will be difficult for the processor to use.

mem = write(…,memorytype) adds an optional input argument
memorytype. Object vd has a default memory type value 0 that write
applies if the memory type value is not explicitly incorporated into the
passed address parameter. In processors with only a single memory
type, it is possible to specify all addresses using the implied memory
type format by setting the vd memorytype property value to zero.

Blackfin and SHARC use different memory types. Blackfin processors
have one memory type. SHARC processors provide five types. The
following table shows the memory types for both processor families.

String Entry for
memorytype

Numeric
Entry for
memorytype

Processor Support

’program(pm) memory’ 0 Blackfin and SHARC
’data(dm) memory’ 1 SHARC

6-51

write

String Entry for
memorytype

Numeric
Entry for
memorytype

Processor Support

’data(dm) short word
memory’

2 SHARC

’external data(dm)
byte memory’

3 SHARC

’boot(prom) memory’ 4 SHARC

mem = write(…,timeout) adds the optional parameter timeout that
defines how long, in seconds, MATLAB waits for the specified write
process to complete. If the timeout period expires before the write
process returns a completion message, MATLAB displays an error and
returns control to the command prompt. Usually the process works
correctly in spite of the error message.

Examples These three syntax examples demonstrate how to use write in some
common ways. In the first example, write an array of 16–bit integers to
location [131072 1].

write(vd,[131072 1],int16([1:100]));

Now write a single-precision IEEE floating point value (32-bits) at
address 2000A(Hex).

write(vd,'2000A',single(23.5));

For the third example, write a 2-D array of integers in row-major
format (standard ANSI C code programming format) at address 131072
(decimal).

mlarr = int32([1:10;101:110]);
write(vd,131072,mlarr);

See Also hex2dec in the MATLAB Function Reference

read

6-52

7

Block Reference

Blackfin DSP Support (p. 7-2) Work with Blackfin processors
Core Support (p. 7-3) Work with Analog Devices processors
SHARC DSP Support (p. 7-4) Work with SHARC processors
TigerSHARC DSP Support (p. 7-5) Work with TigerSHARC processors
Target Preferences (p. 7-6)

7 Block Reference

Blackfin DSP Support

Blackfin Hardware Interrupt Generate Interrupt Service Routine
Target Preferences Configure model for Analog Devices

processor

7-2

Core Support

Core Support
Idle Task Create free-running task
Memory Allocate Allocate memory section on Blackfin,

SHARC, TigerSHARC processors
Memory Copy Copy to and from memory section

7-3

7 Block Reference

SHARC DSP Support

SHARC Hardware Interrupt Generate Interrupt Service Routine
Target Preferences Configure model for Analog Devices

processor

7-4

TigerSHARC® DSP Support

TigerSHARC DSP Support

Target Preferences Configure model for Analog Devices
processor

TigerSHARC Hardware Interrupt Generate Interrupt Service Routine

7-5

7 Block Reference

Target Preferences

Target Preferences Configure model for Analog Devices
processor

7-6

8

Blocks — Alphabetical List

Blackfin Hardware Interrupt

Purpose Generate Interrupt Service Routine

Library Blackfin DSP Support in Embedded IDE Link VS software

Description Create interrupt service routines (ISR) in the software generated by the
build process. When you incorporate this block in your model, code
generation results in ISRs on the processor that run the processes that
are downstream from the this block or an Idle Task block connected
to this block. Core interrupts trigger the ISRs. System interrupts
trigger the core interrupts. In the following figure, you see the mapping
possibilities between system interrupts and core interrupts.

Interrupts

Blackfin processors support the interrupt numbers shown in the
following table. Some Blackfin processors do not support all of the
system interrupts.

Interrupt
Description

Valid Range in Embedded IDE Link VS
Software

Core interrupt
numbers

7 to 14

System interrupt
numbers

0 to 31 (The upper end value depends on the
processor. May be less than 31.)

8-2

Blackfin Hardware Interrupt

Dialog
Box

Core interrupt numbers
Specify a vector of one or more interrupt numbers for the interrupt
service routines (ISR) to install. The valid range is 7 to 14, where
7 through 13 are hardware driven, and 14 is software driven. Core
interrupts numbered 0 to 6 are reserved and cannot be entered in
this field. Each interrupt value must be unique.

The width of the block output signal corresponds to the number of
interrupt values you specify in this field. Triggering of each ISR
depends on the core interrupt value, the system interrupt value,
and the preemption flag you enter for each interrupt. These three
values define how the code and processor respond to interrupts
during asynchronous scheduler operations.

8-3

Blackfin Hardware Interrupt

System interrupt numbers
System interrupt numbers identify system interrupts to map
to core interrupts. Enter one or more values as a vector. Each
interrupt value must be unique. The valid range is generally 0
through 31, although the range depends on your processor. Some
processors do not support the full range of 32 system interrupts.
Embedded IDE Link VS software does not test for valid system
interrupt values. You must verify that your values are valid for
your processor. To use asynchronous scheduling, you must specify
a value for at least one system interrupt number.

The block maps the first interrupt value in this field to the first
core interrupt value in Core interrupt numbers, it maps the
second system interrupt value to the second core interrupt value,
and so on until it has mapped all of the system interrupt values
to core interrupt values. You cannot map more than one system
interrupt to the same core interrupt. You must enter the same
number of system interrupts as core interrupts.

When you trigger one of the system interrupts in this field, the
block triggers the ISR associated with the core interrupt that is
mapped to the system interrupt.

Simulink task priorities
Each output of the Hardware Interrupt block drives a downstream
block (for example, a function call subsystem). Simulink model
task priority specifies the priority of the downstream blocks.
Specify an array of priorities corresponding to the interrupt
numbers entered in Interrupt numbers.

Proper code generation requires rate transition code (see Rate
Transitions and Asynchronous Blocks). The task priority values
ensure absolute time integrity when the asynchronous task must
obtain real time from its base rate or its caller. Typically, assign
priorities for these asynchronous tasks that are higher than the
priorities assigned to periodic tasks.

8-4

Blackfin Hardware Interrupt

Preemption flags preemptible – 1, non-preemptible – 0
Higher priority interrupts can preempt interrupts that have lower
priority. To control this preemption, use the preemption flags to
specify whether an interrupt can be preempted.

• Entering 1 indicates the corresponding core interrupt can be
preempted.

• Entering 0 indicates the corresponding interrupt cannot be
preempted.

When Core interrupt numbers contains more than one
interrupt priority, you can assign different preemption flags to
each interrupt by entering a vector of preemption flag values
that correspond to the order of the interrupts in Core interrupt
numbers. If Core interrupt numbers contains more than one
interrupt, and you enter only one flag value in this field, that
status applies to all interrupts.

For example, the default settings [0 1]indicate that the interrupt
with value 10 in Core interrupt numbers is not preemptible
and the value 12 interrupt can be preempted.

Enable simulation input
When you select this option, Simulink software adds an input
port to the Hardware Interrupt block. This port receives input
only during simulation. Connect one or more simulated interrupt
sources to the simulation input.

8-5

Idle Task

Purpose Create free-running task

Library DSP Core Support in Embedded IDE Link VS

Description The Idle Task block, and the subsystem connected to it, specify one
or more functions to execute as background tasks. All tasks executed
through the Idle Task block are of the lowest priority, lower than that of
the base-rate task.

Vectorized Output

The block output comprises a set of vectors—the task numbers vector
and the preemption flag or flags vector. Any preemption flag vector must
be the same length as the number of tasks vector unless the preemption
flag vector has only one element. The value of the preemption flag
determines whether a given interrupt (and corresponding task) is
preemptible. Preemption overrides prioritization. A lower-priority,
nonpreemptible task can preempt a higher-priority, preemptible task.

When the preemption flag vector has only one element, that element
value applies to all functions in the downstream subsystem as defined
by the task numbers in the task number vector. If the preemption flag
vector has the same number of elements as the task number vector, each
task defined in the task number vector has a preemption status defined
by the value of the corresponding element in the preemption flag vector.

8-6

Idle Task

Dialog
Box

Task numbers
Identifies the created tasks by number. Enter as many tasks as
you need by entering a vector of integers. The default values
are [1,2], to indicate that the downstream subsystem has two
functions.

The values you enter determine the execution order of the
functions in the downstream subsystem, while the number of
values you enter corresponds to the number of functions in the
downstream subsystem.

Enter a vector containing the same number of elements as the
number of functions in the downstream subsystem. This vector
can contain no more than 16 elements, and the values must be
from 0 to 15 inclusive.

The value of the first element in the vector determines the order
in which the first function in the subsystem is executed. Similarly,

8-7

Idle Task

the value of the second element determines the order in which the
second function in the subsystem is executed, and so on.

For example, entering the vector [2,3,1] in this field indicates
that there are three functions to be executed, and that the third
function is executed first, the first function is executed second,
and the second function is executed third. After all functions
are executed, the Idle Task block cycles back and repeats the
execution of the functions in the same order.

Preemption flags
Higher-priority interrupts can preempt interrupts that have lower
priority. To allow you to control preemption, use the preemption
flags to specify whether an interrupt can be preempted.

• Entering 1 indicates that the interrupt can be preempted.

• Entering 0 indicates the interrupt cannot be preempted.

When Task numbers contains more than one task, you can
assign different preemption flags to each task by entering a vector
of flag values, corresponding to the order of the tasks in Task
numbers. If Task numbers contains more than one task, and
you enter only one flag value in this field, that preemption setting
applies to all tasks.

For example, the default settings [0 1] indicate the task with
priority 1 in Task numbers is not preemptible, and the priority 2
task can be preempted.

Enable simulation input
When you select this option, Simulink software adds an input
port to the Idle Task block. This port receives input only during
simulation. Connect one or more simulated interrupt sources to
the simulation input.

8-8

Idle Task

Note Select this check box to test asynchronous interrupt processing
behavior in Simulink software models.

8-9

SHARC Hardware Interrupt

Purpose Generate Interrupt Service Routine

Library SHARC DSP Support in Embedded IDE Link VS

Description Create interrupt service routines (ISR) in the software generated by
the build process. When you incorporate this block in your model,
code generation results in ISRs on the processor that either run the
processes that are downstream from this block or trigger an Idle Task
block connected to this block.

Dialog
Box

8-10

SHARC Hardware Interrupt

Interrupt numbers
Specify an array of interrupt numbers for the interrupts to install.
The valid ranges are 8-36 and 38-40.

The width of the block output signal corresponds to the number
of interrupt numbers specified in this field. The values in this
field and the preemption flag entries in Preemption flags:
preemptible-1, non-preemptible-0 define how the code and
processor handle interrupts during asynchronous scheduler
operations.

Simulink task priorities
Each output of the Hardware Interrupt block drives a downstream
block (for example, a function call subsystem). Simulink model
task priority specifies the priority of the downstream blocks.
Specify an array of priorities corresponding to the interrupt
numbers entered in Interrupt numbers.

Proper code generation requires rate transition code (refer to Rate
Transitions and Asynchronous Blocks in the Real-Time Workshop
documentation). The task priority values ensure absolute time
integrity when the asynchronous task must obtain real time from
its base rate or its caller. Typically, assign priorities for these
asynchronous tasks that are higher than the priorities assigned
to periodic tasks.

Preemption flags preemptible – 1, non-preemptible – 0
Higher-priority interrupts can preempt interrupts that have lower
priority. To allow you to control preemption, use the preemption
flags to specify whether an interrupt can be preempted.

• Entering 1 indicates that the interrupt can be preempted.

• Entering 0 indicates the interrupt cannot be preempted.

When Interrupt numbers contains more than one interrupt
value, you can assign different preemption flags to each interrupt
by entering a vector of flag values to correspond to the order of
the interrupts in Interrupt numbers. If Interrupt numbers

8-11

SHARC Hardware Interrupt

contains more than one interrupt, and you enter only one flag
value in this field, that status applies to all interrupts.

In the default settings [0 1], the interrupt with priority 18 in
Interrupt numbers is not preemptible and the priority 39
interrupt can be preempted.

Enable simulation input
When you select this option, Simulink software adds an input port
to the Hardware Interrupt block. This port is used in simulation
only. Connect one or more simulated interrupt sources to the
simulation input.

8-12

Memory Allocate

Purpose Allocate memory section on Blackfin, SHARC, TigerSHARC processors

Library Core Support in Embedded IDE Link VS

Description On your ADI processor, this block directs the VisualDSP++ compiler
to allocate memory for a new variable you specify. Parameters in the
block dialog box let you specify the variable name, the alignment of the
variable in memory, the data type of the variable, and other features
that fully define the memory required.

Caution

Do not allocate 64-bit data or symbols to 64-bit memory locations
on SHARC processors. After you allocate the memory, reading or
writing to the memory locations produces unexpected results. For more
information about this limitation, refer to “Using 64-bit Symbols in
a 64-bit Memory Section on SHARC Processors” on page B-2 on the
online Help system.

The block does not verify whether the entries for your variable are
valid, such as checking the variable name, data type, or section. You
must ensure that all variable names are valid, that they use valid data
types, and that all section names you specify are valid as well.

The block does not have input or output ports. It only allocates a
memory location. You do not connect it to other blocks in your model.

Dialog
Box

The block dialog box comprises multiple tabs:

• Memory — Allocate the memory for storing variables. Specify the
data type and size.

• Section — Specify the memory section in which to allocate the
variable.

8-13

Memory Allocate

The dialog box images show all of the available parameters enabled.
Some of the parameters shown do not appear until you select one or
more other parameters.

The following sections describe the contents of each pane in the dialog
box.

8-14

Memory Allocate

Memory Parameters

You find the following memory parameters on this tab.

Variable name
Specify the name of the variable to allocate. The variable is
allocated in the generated code.

8-15

Memory Allocate

Specify variable alignment
Select this option to direct the compiler to align the variable in
Variable name to an alignment boundary. When you select this
option, theMemory alignment boundary parameter appears so
you can specify the alignment. Use this parameter and Memory
alignment boundary when your processor requires this feature.

Memory alignment boundary
After you select Specify variable alignment, this option enables
you to specify the alignment boundary in bytes. If your variable
contains more than one value, such as a vector or an array, the
elements are aligned according to rules applied by the compiler.

Data type
Defines the data type for the variable. Select from the list of types
available.

Specify data type qualifier
Selecting this enables Data type qualifier so you can specify the
qualifier to apply to your variable.

Data type qualifier
After you select Specify data type qualifier, you enter the
desired qualifier here. Volatile is the default qualifier. Enter
the qualifier you need as text. Common qualifiers are static and
register. The block does not check for valid qualifiers.

Data dimension
Specifies the number of elements of the type you specify in Data
type. Enter an integer here for the number of elements.

Initialize memory
Directs the block to initialize the memory location to a fixed value
before processing.

Initial value
Specifies the initialization value for the variable. At run time, the
block sets the memory location to this value.

8-16

Memory Allocate

Section Parameters

Parameters on this pane specify the section in memory to store the
variable.

Specify memory section
Selecting this parameter enables you to specify the memory
section to allocate space for the variable. Enter either one of the

8-17

Memory Allocate

standard memory sections or a custom section that you declare
elsewhere in your code.

Memory section
Identify a specific memory section to allocate the variable in
Variable name. Verify that the section has sufficient space
to store your variable. After you specify a memory section by
selecting Specify memory section and entering the section
name in Memory section, use Bind memory section to bind
the memory section to a location.

See Also Memory Copy

8-18

Memory Copy

Purpose Copy to and from memory section

Library Core Support in Embedded IDE Link VS

Description In generated code, this block copies variables or data from and to target
memory as configured by the block parameters. Your model can contain
as many of these blocks as you require to manipulate memory on your
target.

Each block works with one variable, address, or set of addresses
provided to the block. Parameters for the block let you specify both
the source and destination for the memory copy, as well as options for
initializing the memory locations.

Using parameters provided by the block, you can change options like
the memory stride and offset at run time. In addition, by selecting
various parameters in the block, you can write to memory at program
initialization, at program termination, and at every sample time. The
initialization process occurs once, rather than occurring for every read
and write operation.

With the custom source code options, the block enables you to add
custom ANSI C source code before and after each memory read and
write (copy) operation. You can use the custom code capability to lock
and unlock registers before and after accessing them. For example,
some processors have registers that you may need to unlock and
lock with EALLOW and EDIS macros before and after your program
accesses them.

Block Operations

This block performs operations at three periods during program
execution—initialization, real-time operations, and termination. With
the options for setting memory initialization and termination, you
control when and how the block initializes memory, copies to and
from memory, and terminates memory operations. The parameters
enable you to turn on and off memory operations in all three periods
independently.

8-19

Memory Copy

Used in combination with the Memory Allocate block, this block
supports building custom device drivers, such as PCI bus drivers or
codec-style drivers, by letting you manipulate and allocate memory.
This block does not require the Memory Allocate block to be in the
model.

In a simulation, this block does not perform any operation. The block
output is not defined.

Copy Memory

When you employ this block to copy an individual data element from
the source to the destination, the block copies the element from the
source in the source data type, and then casts the data element to the
destination data type as provided in the block parameters.

Dialog
Box

The block dialog box contains multiple tabs:

• Source — Identifies the sequential memory location to copy from.
Specify the data type, size, and other attributes of the source variable.

• Destination — Specify the memory location to copy the source to.
Here you also specify the attributes of the destination.

• Options— Select various parameters to control the copy process.

The dialog box images show many of the available parameters enabled.
Some parameters shown do not appear until you select one or more
other parameters. Some parameters are not shown in the figures, but
the text describes them and how to make them available.

8-20

Memory Copy

Sections that follow describe the parameters on each tab in the dialog
box.

8-21

Memory Copy

Source Parameters

Copy from
Select the source of the data to copy. Choose one of the entries
on the list:

• Input port— This source reads the data from the block input
port.

• Specified address — This source reads the data at the
specified location in Specify address source and Address.

8-22

Memory Copy

• Specified source code symbol — This source tells the
block to read the symbol (variable) you enter in Source code
symbol. When you select this copy from option, you enable the
Source code symbol parameter.

Note If you do not select the Input port option for Copy
from, you must change the Data type parameter setting from
the default Inherit from input port to one of the data types
on the Data type list. If you do not make the change, you
receive an error message that the data type cannot be inherited
because the input port does not exist.

Depending on the choice you make for Copy from, you see other
parameters that let you configure the source of the data to copy.

Specify address source
This parameter directs the block to get the address for the
variable either from an entry in Address or from the input port to
the block. Select either Specify via dialog or Input port from
the list. Selecting Specify via dialog activates the Address
parameter for you to enter the address for the variable.

When you select Input port, the port label on the block changes
to &src, indicating that the block expects the address to come
from the input port. Being able to change the address dynamically
lets you use the block to copy different variables by providing the
variable address from an upstream block in your model.

Source code symbol
Specify the symbol (variable) in the source code symbol table
to copy. The symbol table for your program must include this
symbol. The block does not verify that the symbol exists and uses
valid syntax. Enter a string to specify the symbol exactly as you
use it in your code.

8-23

Memory Copy

Address
When you select Specify via dialog for the address source, you
enter the variable address here. Addresses should be in decimal
form. Enter either the decimal address or the address as a
hexadecimal string with single quotations marks and use hex2dec
to convert the address to the proper format. The following
example converts Ox1000 to decimal form.

4096 = hex2dec('1000');

For this example, you could enter either 4096 or hex2dec('1000')
as the address.

Data type
Use this parameter to specify the type of data that your source
uses. The list includes the supported data types, such as int8,
uint32, and Boolean, and the option Inherit from input port
for inheriting the data type for the variable from the block input
port.

Data length
Specifies the number of elements to copy from the source location.
Each element has the data type specified in Data type.

Use offset when reading
When you are reading the input, use this parameter to specify
an offset for the input read. The offset value is in elements with
the assigned data type. The Specify offset source parameter
becomes available when you check this option.

Specify offset source
The block provides two sources for the offset — Input port and
Specify via dialog. Selecting Input port configures the block
input to read the offset value by adding an input port labeled
src ofs. This port enables your program to change the offset
dynamically during execution by providing the offset value as an
input to the block. If you select Specify via dialog, you enable
the Offset parameter in this dialog box so you can enter the offset
to use when reading the input data.

8-24

Memory Copy

Offset
Offset tells the block whether to copy the first element of the
data at the input address or value, or skip one or more values
before starting to copy the input to the destination. Offset defines
how many values to skip before copying the first value to the
destination. Offset equal to one is the default value and Offset
accepts only positive integers of one or greater.

Stride
Stride lets you specify the spacing for reading the input. By
default, the stride value is one, meaning the generated code reads
the input data sequentially. When you add a stride value that
is not equal to one, the block reads the input data elements not
sequentially, but by skipping spaces in the source address equal
to the stride. Stride must be a positive integer.

The next two figures help explain the stride concept. In the first
figure you see data copied without any stride. Following that
figure, the second figure shows a stride value of two applied
to reading the input when the block is copying the input to an
output location. You can specify a stride value for the output with
parameter Stride on the Destination pane. Compare stride with
offset to see the differences.

8-25

Memory Copy

������
����
������

�����
������

�

�

�

�

�

�

��

!

"

�

�

�

�

�

�

��

!

"

#���������� ���
$����������� ���
%��&���'�()�������*����������

8-26

Memory Copy

�

�

�

�

�

�

��

!

"

�

�

������
����
������

�����
������

�

!

#���������� ���
$����������� ���
%��&���'�()�������*���������

8-27

Memory Copy

Destination Parameters

Copy to
Select the destination for the data. Choose one of the entries on
the list:

• Output port— Copies the data to the block output port. From
the output port the block passes data to downstream blocks
in the code.

8-28

Memory Copy

• Specified address— Copies the data to the specified location
in Specify address source and Address.

• Specified source code symbol— Tells the block to copy the
variable or symbol (variable) to the symbol you enter in Source
code symbol. When you select this copy to option, you enable
the Source code symbol parameter.

Depending on the choice you make for Copy from, you see other
parameters that let you configure the source of the data to copy.

Specify address source
This parameter directs the block to get the address for the
variable either from an entry in Address or from the input port to
the block. Select either Specify via dialog or Input port from
the list. Selecting Specify via dialog activates the Address
parameter for you to enter the address for the variable.

When you select Input port, the port label on the block changes
to &dst, indicating that the block expects the destination address
to come from the input port. Being able to change the address
dynamically lets you use the block to copy different variables by
providing the variable address from an upstream block in your
model.

Source code symbol
Specify the symbol (variable) in the source code symbol table
to copy. The symbol table for your program must include this
symbol. The block does not verify that the symbol exists and
uses valid syntax.

Address
When you select Specify via dialog for the address source, you
enter the variable address here. Addresses should be in decimal
form. Enter either the decimal address or the address as a
hexadecimal string with single quotations marks and use hex2dec
to convert the address to the proper format. This example
converts Ox2000 to decimal form.

8-29

Memory Copy

8192 = hex2dec('2000');

For this example, you could enter either 8192 or hex2dec('2000')
as the address.

Data type
Use this parameter to specify the type of data that your variable
uses. The list includes the supported data types, such as int8,
uint32, and Boolean, and the option Inherit from source for
inheriting the data type for the variable from the block input port.

Specify offset source
The block provides two sources for the offset—Input port and
Specify via dialog. Selecting Input port configures the block
input to read the offset value by adding an input port labeled
src ofs. This port enables your program to change the offset
dynamically during execution by providing the offset value as an
input to the block. If you select Specify via dialog, you enable
the Offset parameter in this dialog box so you can enter the offset
to use when writing the output data.

Offset
Offset tells the block whether to write the first element of the
data to be copied to the first destination address location, or skip
one or more locations at the destination before writing the output.
Offset defines how many values to skip in the destination before
writing the first value to the destination. One is the default offset
value and Offset accepts only positive integers of one or greater.

Stride
Stride lets you specify the spacing for copying the input to
the destination. By default, the stride value is one, meaning
the generated code writes the input data sequentially to the
destination in consecutive locations. When you add a stride value
not equal to one, the output data is stored not sequentially, but by
skipping addresses equal to the stride. Stride must be a positive
integer.

8-30

Memory Copy

This figure shows a stride value of three applied to writing the
input to an output location. You can specify a stride value for the
input with parameter Stride on the Source pane. As shown in
the figure, you can use both an input stride and output stride at
the same time to enable you to manipulate your memory more
fully.

������
����
������

�����
������

�

�

�

�

�

�

��

!

"

�

�

�

!

#���������� ���
$����������� ���
%��&���'�()�������*���������

Sample time
Sample time sets the rate at which the memory copy operation
occurs, in seconds. The default value Inf tells the block to use a

8-31

Memory Copy

constant sample time. You can set Sample time to -1 to direct
the block to inherit the sample time from the input, if there is one,
or the Simulink software model (when there are no input ports on
the block). Enter the sample time in seconds as you need.

Options Parameters

8-32

Memory Copy

Set memory value at initialization
When you check this option, you direct the block to initialize
the memory location to a specific value when you initialize your
program at run time. After you select this option, use the Set
memory value at termination and Specify initialization
value source parameters to set your desired value. Alternately,
you can tell the block to get the initial value from the block input.

Specify initialization value source
After you check Set memory value at initialization, use this
parameter to select the source of the initial value. Choose either

• Specify constant value — Sets a single value to use when
your program initializes memory. Enter any value that meets
your needs.

• Specify source code symbol — Specifies a variable (a
symbol) to use for the initial value. Enter the symbol as a
string.

Initialization value (constant)
If you check Set memory value at initialization and choose
Specify constant value for Specify initialization value
source, enter the constant value to use in this field. Any real
value that meets your needs is acceptable.

Initialization value (source code symbol)
If you check Set memory value at initialization and choose
Specify source code symbol for Specify initialization value
source, enter the symbol to use in this field. Any symbol that
meets your needs and is in the symbol table for the program is
acceptable. When you enter the symbol, the block does not verify
whether the symbol is a valid one. If it is not valid you get an
error when you try to compile, link, and run your generated code.

Apply initialization value as mask
You can use the initialization value as a mask to manipulate
register contents at the bit level. Your initialization value is
treated as a string of bits for the mask.

8-33

Memory Copy

Checking this parameter enables the Bitwise operator
parameter for you to define how to apply the mask value.

To use your initialization value as a mask, the output from the
copy has to be a specific address. It cannot be an output port,
but it can be a symbol.

Bitwise operator
To use the initialization value as a mask, select one of the entries
on the following table from the Bitwise operator list to describe
how to apply the value as a mask to the memory value.

Bitwise
Operator List
Entry Description

bitwise AND Apply the mask value as a bitwise AND to
the value in the register.

bitwise OR Apply the mask value as a bitwise OR to
the value in the register.

bitwise
exclusive OR

Apply the mask value as a bitwise exclusive
OR to the value in the register.

left shift Shift the bits in the register left by
the number of bits represented by the
initialization value. For example, if your
initialization value is 3, the block shifts the
register value to the left 3 bits. In this case,
the value must be a positive integer.

right shift Shift the bits in the register to the right
by the number of bits represented by the
initialization value. For example, if your
initialization value is 6, the block shifts the
register value to the right 6 bits. In this
case, the value must be a positive integer.

8-34

Memory Copy

Applying a mask to the copy process lets you select individual
bits in the result, for example, to read the value of the fifth bit by
applying the mask.

Set memory value at termination
Along with initializing memory when the program starts to access
this memory location, this parameter directs the program to set
memory to a specific value when the program terminates.

Set memory value only at initialization/termination
This block performs operations at three periods during program
execution—initialization, real-time operations, and termination.
When you check this option, the block only does the memory
initialization and termination processes. It does not perform any
copies during real-time operations.

Insert custom code before memory write
Select this parameter to add custom ANSI C code before the
program writes to the specified memory location. When you select
this option, you enable the Custom code parameter where you
enter your ANSI C code.

Custom code
Enter the custom ANSI C code to insert into the generated code
just before the memory write operation. Code you enter in this
field appears in the generated code exactly as you enter it.

Insert custom code after memory write
Select this parameter to add custom ANSI C code immediately
after the program writes to the specified memory location. When
you select this option, you enable the Custom code parameter
where you enter your ANSI C code.

Custom code
Enter the custom ANSI C code to insert into the generated code
just after the memory write operation. Code you enter in this field
appears in the generated code exactly as you enter it.

See Also Memory Allocate

8-35

Target Preferences

Purpose Configure model for Analog Devices processor

Library Target Preferences in Embedded IDE Link VS

Description Options on the block mask let you set features of code generation for
your custom Blackfin, SHARC, or TigerSHARCprocessor. Adding this
block to your Simulink software model provides access to the processor
hardware settings you need to configure when you generate code from
Real-Time Workshop software to run on the processor.

Any model that you target to custom hardware must include this block.
Real-Time Workshop software returns an error message if a target
preferences block is not present in your model.

Note This block must be in your model at the top level and not in a
subsystem. It does not connect to other blocks, but stands alone to set
the target preferences for the model. Simulink software returns an
error when your model either does not include a target preferences
block or has more than one.

You can specify the following processor and target options on this block:

• Board and processor information

• Memory mapping and layout

• Allocation of the various code sections, such as compiler, and custom
sections

Setting the options included in this dialog box results in identifying
your target to Real-Time Workshop, VisualDSP++, and Simulink

8-36

Target Preferences

software, and configuring the memory map for your target. Both steps
are essential for developing code for any processor that is custom or
explicitly supported.

Unlike most other blocks, you cannot open the block dialog box for this
block until you add the block to a model. When you try to open the block
dialog, the block attempts to connect to a VisualDSP++ IDE session. It
cannot make the connection when the block is in the library. If you try
to open the block dialog before you add it to a model, the open process
fails and returns an error message.

Note If you do not have VisualDSP++ software installed on your PC,
you cannot open this block dialog.

Generating Code from Model Subsystems

Real-Time Workshop software provides the capability to generate
code from a selected subsystem in a model. To generate code for an
Analog Devices processor from a subsystem, the subsystem model must
include this target preferences block.

Dialog
Box

This section contains the following subsections:

• “Board Info Pane” on page 8-39

• “Memory Pane” on page 8-42

• “Sections Pane” on page 8-48

• “New Processor Dialog Box” on page 8-53

8-37

Target Preferences

All target preferences block dialog boxes provide tabbed access to the
following panes. You set the options for the processor from these panes:

• Board info — Select the board type and processor, set the clock
speed, and identify the session.

• Memory — Set the memory allocation and layout on the processor
(memory mapping).

8-38

Target Preferences

• Sections— Determine the arrangement and location of the sections
on the processor, such as where to put the compiler information.

Board Info Pane

The following options appear on the Board Info pane for the Target
Preferences dialog box.

Board Type
Enter the type of board you are targeting with the model. You can
enter Custom to support any board, based on one of the supported
processors, or enter the name of one of the supported boards.

Processor
Select the processor on the board you select in Board type. The
processor type you enter determines the contents and setting for
options on theMemory and Sections panes in this dialog box.

CPU clock
Shows the clock speed of the processor. When you enter a value,
you are not changing the CPU clock rate. Instead, you are
reporting the actual rate. If the value you enter does not match
the rate on the processor, your model’s real-time code profiling
results may be incorrect.

Enter the actual clock rate the board uses. The rate you enter in
this field does not change the rate on the board. Setting CPU
clock to the actual board rate allows the code you generate to run
correctly according to the actual clock rate of the hardware.

When you generate code for targets from Simulink software
models, you may encounter the software timer. The timer is
invoked automatically to handle and create interrupts to drive
your model if the processing rates in your model change (the
model is multirate).

Correctly generating interrupts for your model depends on the
clock rate of the CPU on your processor.

8-39

Target Preferences

For the timer software to calculate the interrupts correctly,
VisualDSP++ software needs to know the actual clock rate of your
processor as you configured it. CPU clock speed lets you tell the
timer the rate at which your processor CPU runs, which is the
rate to use to match the CPU rate.

The timer uses the CPU clock rate you specify in CPU clock to
calculate the time for each interrupt. For example, if your model
includes a sine wave generator block running at 1 kHz feeding a
signal into an FIR filter block, the timer needs to create interrupts
to generate the sine wave samples at the proper rate. The timer
uses the clock rate you enter, for example, 100 MHz, to calculate
the sine generator interrupt period as follows for the sine block:

• Sine block rate = 1 kHz, or 0.001 s/sample

• CPU clock rate = 100 MHz, or 0.000000001 s/sample

To create sine block interrupts at 0.001 s/sample requires:

100,000,000/1000 = 1 Sine block interrupt per 100,000 clock ticks

Thus, you must report the correct clock rate, or the interrupts
come at the wrong times and the results are incorrect.

Board Custom Code
Entries in this group let you specify the locations of custom source
files or libraries or other functions. The following options provide
access to text areas where you enter files and file paths. The block
does not check whether the functions you enter are correct or the
file paths you provide exist and are correct. Entering incorrect
functions or paths may cause errors during code generation.

• Source files— Enter the full paths to source code files to use
with this processor. By default, there are no entries in this
parameter.

8-40

Target Preferences

• Include paths— If you require additional files on your path,
add them by typing the path into the text area. The default
setting does not include additional paths.

• Libraries — These entries identify specific libraries that
the processor requires. They appear on the list by default if
required. Add more as you require by entering the full path to
the library with the library file in the text area. No additional
libraries appear in this field in the default configuration.

• Initialize functions— If your project requires an initialize
function, enter it in this field. By default, this parameter is
empty.

• Terminate functions — Enter a function to run when a
program terminates. The default setting is not to include a
specific termination function.

When you enter a path to a file, library, or other custom code,
use the string

$(install_dir)

to refer to the VisualDSP++ software installation directory.

Enter new paths or files (custom code items) one entry per line.
Include the full path to the file for libraries and source code.
Board custom code options do not support functions that use
return arguments or values. Only functions of type void fname
void are valid as entries in these parameters.

Session name
Contains a list of all the sessions defined in VisualDSP++ IDE.
From the list of available sessions, select the one to which you
are targeting your code.

Processor name
Lists the processors on the board you selected for targeting in
Session name. In most cases, only one name appears because

8-41

Target Preferences

the board has one processor. In the multiprocessor case, you
select the processor by name from the list.

Memory Pane

When you develop models for any processor, you need to specify the
layout of the physical memory on your processor and board to determine
how use it for your program. For supported boards, the board-specific
target preferences blocks set the default memory map.

8-42

Target Preferences

The Memory pane contains memory options in three areas:

• Physical Memory— Specify the processor and board memory map

• Heap — Specify whether you use a heap and determine the size
in words

8-43

Target Preferences

• Cache configuration — Enables the cache (where available) and
sets the size in kilobytes

Note Your Physical Memory, Heap, and Cache configuration
settings on this pane may affect options on the Sections pane. Your
choices on the Memory pane may change how you configure some
options on the Sections pane.

Most of the information about memory segments and memory allocation
is available from the online help system for the VisualDSP++ product.

Physical Memory Options

This list shows the physical memory segments available on the board
and processor. By default, target preferences blocks show the memory
segments found on the selected processor. In addition, the Memory
pane on preconfigured target preferences blocks shows memory
segments that are available on the board, but that are external to the
processor (external memory). Target preferences blocks set default
starting addresses, lengths, and contents of the default memory
segments.

The default memory segments for each processor and board are
different. For example:

• Custom boards based on Blackfin processors provide SRAM memory
segments by default.

• SHARC-based boards provide RAM memory segments by default.

Name
When you highlight an entry on the Physical memory list, the
name of the entry appears in this field. To change the name of the
existing memory segment, select it in the Physical memory list
and then type the new name in this field.

8-44

Target Preferences

Note You cannot change the names of default processor memory
segments.

To add a new physical memory segment to the list, click Add,
replace the temporary label in Name with the one to use, and
press Return. Your new segment appears on the list.

After you add the segment, you can configure the starting address,
length, and contents for the new segment. New segments start
with code and data as the type of content that can be stored in the
segment (refer to the Contents option).

Names are case sensitive. NewSegment is not the same as
newsegment or newSegment.

Address
Address reports the starting address for the memory segment
showing in the Name field. Address entries are in hexadecimal
format and limited only by the board or processor memory.

When you are using a processor-specific preferences block, the
starting address shown is the default value. You can change the
starting value by entering the new value directly in the Address
field when you select the memory segment to change.

Length
From the starting address, Length sets the length of the memory
allocated to the segment in the Name field. As in all memory
entries, specify the length in hexadecimal format, in minimum
addressable data units (MADUs).

When you are using a processor-specific preferences block, the
length shown is the default value. You can change the value by
entering the new value directly in this option.

8-45

Target Preferences

Contents
Contents details the kind of program sections that you can store
in the memory segment in Name. As the processor type for the
target preferences block changes, the kinds of information you
store in listed memory segments may change. Generally, the
Contents list contains these strings:

• Code — Allow code to be stored in the memory segment in
Name.

• Data — Allow data to be stored in the memory segment in
Name.

• Code and Data — Allow code and data to be stored in the
memory segment in the Name field. When you add a new
memory segment, this string is the default setting for the
contents of the new element.

You may add or use as many segments of each type as you need,
within the limits of the memory on your processor.

Add
Click Add to add a new memory segment to the processor memory
map. When you click Add, a new segment name appears, for
example NEWMEM1, in Name and on the Physical memory list. In
Name, change the temporary name NEWMEM1 by entering the new
segment name. Entering the new name or clicking Apply updates
the temporary name on the list to the name you enter in this field.

Remove
Remove a memory segment from the memory map. Select the
segment to remove on the Physical memory list, and click
Remove to delete the segment.

Memory bank list
Displays all available memory banks for the selected processor.
When you select one of the entries on this list, the Name,
Address, Length, and Contents parameters change to reflect
the memory block selection. With the contents list, you can change
the type of material stored in the block—data or code or both.

8-46

Target Preferences

Create Heap
If your processor supports using a heap, as the Blackfin and
SHARC processors do, selecting this option enables creating the
heap, and enables the Heap size option. Create heap is not
available on processors that either do not provide a heap or do not
allow you to configure the heap.

Use this option to create a heap in any memory segment on the
Physical memory list. Select the memory segment on the list,
and then select Create heap to create a heap in the selected
segment. After you create the heap, use the Heap size and
Define label options to configure the heap.

The location of the heap in the memory segment is not under
your control. The only way to control the location of the heap in
a segment is to make the segment and the heap the same size.
Otherwise, the compiler determines the location of the heap in
the segment.

Heap Size
After you select Create heap, this option lets you specify the
size of the heap in words. Enter the number of words in decimal
format. When you enter the heap size in decimal words, the
system converts the decimal value to hexadecimal format. You
can enter the value directly in hexadecimal format as well.
Processors may support different maximum heap sizes.

Define Label
Selecting Create heap enables this option that allows you to
name the heap. Enter your label for the heap in the Heap label
option.

Heap Label
Use this option which you enable by selecting Define label, to
provide the label for the heap. Any combination of characters is
accepted for the label, except reserved characters in ANSI C/C++
compilers.

8-47

Target Preferences

The block does not verify that the label you enter is valid. Invalid
labels can cause errors during code generation.

Cache level
Blackfin, SHARC, and TigerSHARC processors support different
cache arrangements. For Blackfin processors, you can select one
of the following options from the list:

• L1_Code_CACHE

• L1_DataA_CACHE

• L1_DataB_CACHE

On SHARC processors, the cache is always Instruction_CACHE.
Set the cache size in Configuration.

On TigerSHARC processors, the cache is always CACHE, used
for both data and code, and you can only enable the cache. You
cannot choose the size or configuration. Use the Configuration
option to enable the cache.

Configuration
Select the size of the cache from the list to determine the size of
the cache allocated. SHARC processors support 1536 bits or 0
bits (no cache). Blackfin processors support 0 bits or 16 bits. For
TigerSHARC processors, your choices are disable or enable only.

Sections Pane

Options on this pane let you specify where various program sections
should go in memory. Program sections are distinct from memory
segments—sections are portions of the executable code stored in
contiguous memory locations. Commonly used sections include
.program, .bsz, .data1, and .stack.

For more information about program sections and objects, refer to the
Analog Devices VisualDSP++ product online help.

8-48

Target Preferences

Within this pane, you allocate the memory needed for the Default
sections and Custom sections.

The following table provides brief definitions of the sections in the
Default sections, and Custom sections lists in the pane. All sections
do not appear for all processors.

8-49

Target Preferences

String Description of the Section Contents

bsz Global zero initialized data
bsz_init Run-time initialization data
constdata Constant data, usually defined with the ANSI C

qualifier and string constants
cplb_code CPLB management routines
cplb_data CPLB configuration tables
data1 Global program data for execution
heap System heap allocation
L1_Data_A L1 band A SRAM data
L1_Data_B L1 band B SRAM data
noncache_code Code not assigned to the cache
program Program code
seg_argv Command line arguments that PGO uses
seg_dmda Global data
seg_heap System heap
seg_init Stack and heap location and size info
seg_int_code Interrupt latch register modifier code
seg_pmco Program code
seg_pmda Global program data qualified with pm keyword
seg_rth Interrupt vector table
seg_stak System stack
stack Global system stack
voldata Volatile data

You can learn more about memory sections and objects in your Analog
Devices VisualDSP++ product online help.

8-50

Target Preferences

Default sections
During program compilation, the compiler produces both
uninitialized and initialized blocks of data and code. These blocks
get allocated into memory as required by the configuration of your
system. On the Default sections list you find both initialized
sections that contain data or executable code and uninitialized
sections that reserve space in memory.

The following sections are initialized:

• bsz

• bsz_init

• constdata

• seg_pmco

• seg_pmda

• voldata (created by the assembler)

The following sections are not initialized:

• heap

• stack

Note The ANSI C/C++ compiler does not use the .data section.

When you highlight a section on the list, Section description
shows a brief description of the section. Also, Placement shows
you where the section is presently allocated in memory.

Section description
Describes the contents of the selected entry on the Default
sections list.

8-51

Target Preferences

Placement
Shows you where the selected Default sections list entry is
allocated in memory. You change the memory allocation by
selecting a different location from the Placement list. The list
contains the memory segments as defined in the physical memory
map on the Memory pane. Select one of the listed memory
segments to allocate the highlighted compiler section to the
segment.

Custom sections list
When your program uses code or data sections that are not
included in the Default sections list, add the new sections to this
list. Initially, the Custom sections list parameter contains no
fixed entries. Only a placeholder for a section for you to define.

Name
Enter the name for your new section in this field. To add a new
section, click Add. Then, replace the temporary name with the
name to use. Although the temporary name includes a period at
the beginning you do not need to include a period in your new
name. Names are case sensitive. NewSection is not the same
as newsection, or newSection.

Contents
Select the kind of data to assign to the new section. Choose from
one of the following list entries:

• Any— Indicates the section can store either code or data. New
sections use Any by default.

• Code — Indicates the section stores code.

• Data — Indicates the section stores data.

Attributes
Not used.

Placement
After you have added the new section to the Name list, select the
memory segment to which to add your new section. Limited only

8-52

Target Preferences

by the restrictions imposed by the hardware and compiler, you
can select any segment that appears on the list.

Add
Click Add to add a new entry on the list of custom sections. When
you click Add, a new temporary name, for example NEWMEM1
appears in the Name field. Enter the new custom section name to
add the section to the Custom sections list. After you enter the
new name, click Apply to add the new section to the list. You can
also click OK to add the section to the list and close the dialog box.

Remove
Remove a section from the Custom sections list. To remove a
section, select the section, and click Remove.

New Processor Dialog Box

Clicking Add new on the General paneopens this dialog box to add a
new processor to the list of supported processors. The new processor
must be a member of one of the supported families of processors.

The first time you click Save to add a new processor definition to
the list of supported processors, a dialog box opens that directs you
to select a destination folder for the saved processor definitions file
customChipInfo.dat. You must select a directory to which you have
write access. The location you specify becomes part of your MATLAB
software preferences. Future processors that you add become entries
in the file customChipInfo.dat.

To add a new processor, enter values for the following parameters:

Name
Provide a name to identify your new processor. You can use any
valid ANSI C string value in this field. The name you enter in
this field appears on the list of processors after you add the new
processor.

Processor Class
Identifies the class of the new processor. Your new processor must
be a member of a family of processors that Embedded IDE Link

8-53

Target Preferences

VS software supports. For example, you can add a new Blackfin
processor because the product supports the Blackfin processor
family.

CPU clock
Provide a name to identify your new processor. You can use any
valid ANSI C string value in this field. The name you enter in
this field appears on the list of processors after you add the new
processor.

Enter the clock speed of the processor in MHz. When you enter
a value, you are not setting the CPU clock rate on the processor.
You are reporting the rate. If the value you enter does not match
the rate on the processor, your model’s real-time results may be
wrong, and code profiling results are not correct.

Setting CPU clock to the actual board rate allows the generated
code to run correctly according to the actual clock rate of the
hardware.

Compiler switch
This string ensures that the compile operation works successfully.

Code generation hook
This string provides the prefix that the calling code uses to call
hook functions during code generation.

Define internal memory banks (one or more memory banks)
Parameters in this group configure the memory map for the new
processor.

Define default sections (one or more default sections)
Parameters in this group configure the default sections for your
new processor.

If you do not provide an entry for each of these parameters, Embedded
IDE Link VS software returns an error message and does not create
the new processor entry.

8-54

Target Preferences

General
Name

Provide a name to identify your new processor. You can use any
valid ANSI C string in this field. The name you enter appears on
the list of processors after you add the new processor.

8-55

Target Preferences

CPU clock
Enter the clock speed of the processor in MHz. When you enter
a value, you are not setting the CPU clock rate on the processor.
You are reporting the rate. If the value you enter does not match
the rate on the processor, your model’s real-time results and code
profiling results may not be correct.

Setting CPU clock to the actual board rate allows the code you
generate to run correctly according to the actual clock rate of the
hardware.

Processor class
This represents the class for the new processor. New processors
must be members of processor families that Embedded IDE Link
VS software supports, such as a new Blackfin or TigerSHARC
processor.

You cannot add a new processor class to support your new
processor.

Generally, processors in a family share common design elements
such as interrupt architecture and clock. They may have different
memory maps. By selecting the processor class, you identify the
common features of the processor family. The parameters in
Define internal memory banks and Define default sections
enable you to specify the memory mapping for your new processor.

For example, to add a new Blackfin processor, enter the string
BFxxx where xxx is the processor number.

The following table shows the strings for the supported processor
families.

Processor Family Processor Class String

Blackfin BFxxx where xxx is the
numerical designation of the
processor, such as BF532

8-56

Target Preferences

Processor Family Processor Class String

SHARC xxxxx where xxxxx is the
numerical designation for the
processor, such as 21366

TigerSHARC xxxwhere xxx is the numerical
designation for the processor,
such as 202

Here is an example of using the code generation hook when you
begin to generate a project from a model intended for the BF532
processor. At the start of the code generation process, the process
calls BFxxx_validateModelEntry.m to validate the model settings
for the processor. The BFxxx prefix is the code generation hook.

Compiler switch
Identifies the processor family of the new processor to the
compiler. Successful compilation requires this switch. The string
depends on the processor family or class. The software does not
use this string.

Code generation hook
This string represents a prefix to add when the code generation
process call certain hook functions. The hook allows the code
to call into handling functions that are specific to the processor
selected.

The code generation hook strings for the supported processors
appear in the following table.

Processor Class or Family Code Generation Hook
String

Blackfin blackfin

SHARC sharc

TigerSHARC tigersharc

8-57

Target Preferences

Define internal memory banks
Name

To add a new physical memory segment to the internal memory
banks list, click Add, replace the temporary label in Name with
the one to use, and press Return. Your new segment appears
on the list.

After you add the segment, you can configure the starting address,
length, and contents for the new segment. New segments start
with code and data as the type of content that can be stored in the
segment (refer to the Contents option).

Names are case sensitive. NewSegment is not the same as
newsegment or newSegment.

Address
Address reports the starting address in hexadecimal format for
the memory segment showing in Name. Address entries are
limited only by the board or processor memory.

When you are using a processor-specific preferences block, the
starting address shown is the default value. You can change the
starting value by entering the new value directly in Address
when you select the memory segment to change.

Length
From the starting address, Length sets the length of the
memory allocated to the segment in Name. As in all memory
entries, specify the length in hexadecimal format, in minimum
addressable data units (MADUs). For the Analog Devices
processor families, for example, the MADU is 8 bytes, 1 word.

Contents
Contents specifies the kind of program sections that you can
store in the memory segment in Name. When you change the
processor type, the kinds of information you can store in listed
memory segments may change. Generally, the Contents list
contains these strings:

8-58

Target Preferences

• Code — Allow code to be stored in the memory segment in
Name.

• Data — Allow data to be stored in the memory segment in
Name.

• Code and Data — Allow code and data to be stored in the
memory segment in Name. When you add a new memory
segment, this setting is the default for the contents of the new
element.

You may add or use as many segments of each type as you need,
within the limits of the memory on your processor.

Add
Click Add to add a new memory segment to the processor memory
map. When you click Add, a new segment name appears, for
example NEWMEM1, in Name and on the list. In Name, change the
temporary name NEWMEM1 by entering the new segment name.
Entering the new name, or clicking OK updates the temporary
name on the list to the name you enter.

Remove
Remove a memory segment from the memory map. Select the
segment to remove from the list, and click Remove to delete the
segment.

Define cache configuration
Options

Enter the label for each option of the selected cache configuration,
one label on each line, such as 0kb, 16kb, 32kb and so on.

Add
Click Add to add a new cache configuration to the list. When you
click Add, the new cache label appears on the list.

Remove
Remove a cache configuration from the cache list. Select the
configuration to remove from the list, and click Remove to delete
the cache.

8-59

Target Preferences

Cache configurations and related options are defined as symbols
to the project generator component. Cache options for new
processors are not labeled until you add the labels.

Label
Enter your label for the heap in the Label field. Entering the
label updates the label of the selected configuration.

Define Default Sections
Options in this region let you specify where various program sections
go in memory and the contents and label for each section. You can
add text to describe each section. Program sections are distinct from
memory segments—sections are portions of the executable code stored
in contiguous memory locations. Commonly used sections include .text,
.bss, .data, and .stack. Some sections relate to the compiler, and some
can be custom sections as you require.

Label
The name of the section corresponds to the symbolic name
recognized by the linker program used with the respective
processor.

Contents
Contents provides the information about the native of the
program section. As the processor type for the target preferences
block changes, the kinds of information you store in listed sections
may change. Generally, the Contents list contains these strings:

• Code— Allow code to be stored in the section in Name.

• Data— Allow data to be stored in the section in Name.

• Code and Data — Allow code and data to be stored in the
section in Name. When you add a new section, this setting is
the default for the contents.

You may add or use as many sections of each type as you need,
within the limits of the memory on your processor.

8-60

Target Preferences

Add
Click Add to add a new section to the list. When you click Add,
the new section appears on the list.

Remove
This option lets you remove a section from the section list. Select
the section to remove from the list, and click Remove to delete
the section.

Sections and related options are defined as symbols to the project
generator component. Section options for new processors are not
labeled until you add the labels.

Processor Custom Code
The list on the left side of the pane shows the kinds of custom code
you can specify for your processor. Each time you use your custom
processor as defined in this dialog box, the custom code you enter in
this field applies. You can enter custom code in the categories in the
following table.

Custom Code Entry Description

Source files Enter the full paths to source code files to use
with this processor. By default there are no
entries in this parameter. Enter each source
file on a new line.

Include paths If you require additional header files on
your path, add them by typing the path into
the text area, one file per line. The default
setting does not include additional paths.

Libraries (Little
Endian)

These entries identify specific little endian
libraries that the processor requires. Add
more as you require by entering the full path
to the library with the library file in the
text area. Enter one library per line. No
additional libraries appear in the default
configuration.

8-61

Target Preferences

Custom Code Entry Description

Libraries (Big
Endian)

These entries identify specific big endian
libraries that the processor requires. Add
more as you require by entering the full path
to the library with the library file in the text
area. No additional libraries appear in the
default configuration. Enter one library per
line.

Preprocessor
symbols

Enter any preprocessor symbols that the
new processor requires for operation and
compilation. No preprocessor symbols appear
in the default configuration. Add the required
symbols one symbol per line.

You can use two types of tokens when you specify custom code paths:

• $(Install_dir) — Refers to the installation directory of
VisualDSP++ software. One example of this token is

$(Install_dir) \vdsplink\csl\lib\...

• $(MATLAB_ROOT)— Refers to the directory where you installed your
MATLAB software.

8-62

TigerSHARC Hardware Interrupt

Purpose Generate Interrupt Service Routine

Library TigerSHARC DSP Support in Embedded IDE Link VS

Description Create interrupt service routines (ISR) in the software generated by the
build process. When you incorporate this block in your model, code
generation results in ISRs on the processor that run the processes that
are downstream from the this block or an Idle Task block connected to
this block.

Dialog
Box

8-63

TigerSHARC Hardware Interrupt

Interrupt numbers
Specify an array of interrupt numbers for the interrupts to install.
The valid interrupts are 2, 3, 6-9, 14-17, 22-25, 29-32, 37, 38,
41-44, 52.

The width of the block output signal corresponds to the number
of interrupt numbers specified in this field. Combined with the
Simulink task priorities that you enter and the preemption
flag you enter for each interrupt, these three values define how
the code and processor handle interrupts during asynchronous
scheduler operations.

Simulink task priorities
Each output of the Hardware Interrupt block drives a downstream
block (for example, a function call subsystem). Simulink model
task priority specifies the priority of the downstream blocks.
Specify an array of priorities corresponding to the interrupt
numbers entered in Interrupt numbers.

Simulink model task priority values are required to generate
the proper rate transition code (refer to Rate Transitions and
Asynchronous Blocks in the Real-Time Workshop documentation).
The task priority values are also required to ensure absolute time
integrity when the asynchronous task needs to obtain real time
from its base rate or its caller. Typically, you assign priorities
for these asynchronous tasks that are higher than the priorities
assigned to periodic tasks.

Preemption flags preemptible – 1, non-preemptible – 0
Higher priority interrupts can preempt interrupts that have lower
priority. To allow you to control preemption, use the preemption
flags to specify whether an interrupt can be preempted.

Entering 1 indicates that the interrupt can be preempted.
Entering 0 indicates the interrupt cannot be preempted. When
Interrupt numbers contains more than one interrupt priority,
you can assign different preemption flags to each interrupt by
entering a vector of flag values, corresponding to the order of

8-64

TigerSHARC Hardware Interrupt

the interrupts in Interrupt numbers. If Interrupt numbers
contains more than one interrupt, and you enter only one flag
value in this field, that status applies to all interrupts.

In the default settings [0 1], the interrupt with priority 15 in
Interrupt numbers is not preemptible and the priority 42
interrupt can be preempted.

Enable simulation input
When you select this option, Simulink software adds an input port
to the Hardware Interrupt block. This port is used in simulation
only. Connect one or more simulated interrupt sources to the
simulation input.

8-65

TigerSHARC Hardware Interrupt

8-66

9

Embedded IDE Link VS
Software Configuration
Parameters

9 Embedded IDE Link™ VS Software Configuration Parameters

Embedded IDE Link VS Pane

In this section...

“Embedded IDE Link VS Overview” on page 9-4
“IDE link handle name” on page 9-6
“Profile real-time execution” on page 9-7
“Profile by” on page 9-9
“Number of profiling samples to collect” on page 9-10
“Inline run-time library functions” on page 9-12
“Project options” on page 9-14
“Compiler options string” on page 9-16
“Linker options string” on page 9-18
“System stack size (MAUs)” on page 9-20

9-2

Embedded IDE Link VS Pane

In this section...

“Build action” on page 9-21
“Interrupt overrun notification method” on page 9-24
“Interrupt overrun notification function” on page 9-26
“PIL block action” on page 9-27
“Maximum time allowed to build project (s)” on page 9-29
“Maximum time to complete IDE operations (s)” on page 9-31
“Source file replacement” on page 9-33

9-3

9 Embedded IDE Link™ VS Software Configuration Parameters

Embedded IDE Link VS Overview
Options on this pane configure the generated projects and code for Analog
Devices processors. They also enable PIL block generation and provide
real-time task execution and stack use profiling.

9-4

9 Embedded IDE Link™ VS Software Configuration Parameters

9-5

9 Embedded IDE Link™ VS Software Configuration Parameters

IDE link handle name
specifies the name of the adivdsp object that the build process creates.

Settings
Default: VDSP_Obj

• Enter any valid C variable name, without spaces.

• The name you use here appears in the MATLAB workspace browser to
identify the adivdsp object.

• The handle name is case sensitive.

Command-Line Information

Parameter: ideObjName
Type: string
Value:
Default: VDSP_Obj

Recommended Settings

Application Setting

Debugging Enter any valid C program variable name,
without spaces

Traceability No impact
Efficiency No impact
Safety precaution No impact

See Also
For more information, refer to Embedded IDE Link VS Pane Options.

9-6

Embedded IDE Link VS Pane

Profile real-time execution
Enables real-time execution profiling in the generated code by adding
instrumentation for task functions or atomic subsystems.

Settings
Default: Off

On
Adds instrumentation to the generated code to support task execution
profiling and generate the profiling report.

Off
Does not instrument the generated code to produce the profile report.

Dependencies
This parameter adds Number of profiling samples to collect.

Selecting this parameter disables ID link handle name.

Setting Build action to Archive_library or
Create_processor_in_the_loop project removes this parameter.

Command-Line Information

Parameter: ProfileGenCode
Type: string
Value: 'on' | 'off'
Default: 'off'

Recommended Settings

Application Setting

Debugging On
Traceability On

9-7

9 Embedded IDE Link™ VS Software Configuration Parameters

Application Setting

Efficiency No impact
Safety precaution No impact

See Also
For more information, refer to Embedded IDE Link VS Pane Options.

9-8

Embedded IDE Link VS Pane

Profile by
Defines how to profile the executing program.

Settings
Default: Task

Task
Profiles model execution by the tasks defined in the model and program.

Atomic subsystem
Profiles model execution by the atomic subsystems in the model.

Dependencies
Selecting Profile real-time execution enables this parameter.

Command-Line Information

Parameter: profileBy
Type: string
Value: Task | Atomic subsystem
Default: Task

Recommended Settings

Application Setting

Debugging Task or Atomic subsystem

Traceability Archive_library

Efficiency No impact
Safety precaution No impact

See Also
For more information, refer to Embedded IDE Link VS Pane Options.

For more information about PIL, refer to Using Processor-in-the-Loop.

9-9

9 Embedded IDE Link™ VS Software Configuration Parameters

Number of profiling samples to collect
Specifies the number of profiling samples to collect. Collection stops when
the buffer for profiling data is full.

Settings
Default: 100

Minimum: 1

Maximum: Buffer capacity in samples

Tips

• Collecting profiling data on a simulator may take a very long time.

• Data collection stops after collecting the specified number of samples. The
application and processor continue to run.

Dependencies
This parameter is enabled by Profile real-time execution.

Command-Line Information

Parameter:ProfileNumSamples
Type: int
Value: Positive integer
Default: 100

Recommended Settings

Application Setting

Debugging 100
Traceability No impact
Efficiency No impact
Safety precaution No impact

9-10

Embedded IDE Link VS Pane

See Also
For more information, refer to Embedded IDE Link VS Pane Options.

9-11

9 Embedded IDE Link™ VS Software Configuration Parameters

Inline run-time library functions
Marks run-time library functions generated by the Signal Processing
Toolbox™ and Video and Image Processing Blockset block algorithms. These
functions as marked with the inline keyword.

Settings
Default: On

On
Adds the keyword inline to each instance of an algorithm generated
from blocks in the Signal Processing Blockset software and Video and
Image Processing Blockset software.

Off
Does not mark the algorithms with the keyword.

Tips
The following list shows cases where inlining run-time library functions may
not be appropriate:

• Few or no numerical parameters in the function

• One algorithm that is already fixed in capability, such as it has no optional
modes or alternate algorithms

• Function supports only one data type

• Significant or large code size in the mdlOutputs() function

• Your models use multiple instances of this library function

Command-Line Information

Parameter: InlineDSPBlks
Type: string
Value: 'on' | 'off'
Default: on

9-12

Embedded IDE Link VS Pane

Recommended Settings

Application Setting

Debugging Off
Traceability On
Efficiency On
Safety precaution No impact

See Also
For more information, refer to Embedded IDE Link VS Pane Options.

9-13

9 Embedded IDE Link™ VS Software Configuration Parameters

Project options
Sets the project options for building your project from the model.

Settings
Default: Custom

Custom
Applies a custom project configuration that provides a specialized
combination of build and optimization settings.

The default settings are the same as the Release project configuration
in VisualDSP++ software, except for the compiler and memory options.
For the compiler options, Custom uses does not apply compiler options.
For memory configuration, Custom specifies the memory model that uses
near functions and data.

Debug
Applies the Debug project options defined by Embedded IDE Link VS
software to the generated project and code.

Release
Applies the Release project configuration defined by Embedded IDE
Link VS software to the generated project and code.

Dependencies
Selecting Custom disables the Reset options for Compiler options string
and Linker options string.

Command-Line Information

Parameter: projectOptions
Type: string
Value: Custom | Debug | Release
Default: Custom

9-14

Embedded IDE Link VS Pane

Recommended Settings

Application Setting

Debugging Custom or Debug

Traceability Custom, Debug, Release

Efficiency Release

Safety precaution No impact

See Also
For more information, refer to Embedded IDE Link VS Pane Options.

9-15

9 Embedded IDE Link™ VS Software Configuration Parameters

Compiler options string
Enter a string of compiler options to define your project configuration.

Settings
Default: No default

Tips

• To reset the compiler options to the default values, click Reset.

• Use spaces between options.

• Verify that the options are valid. The software does not validate the option
string.

• Setting Project options to Custom applies no optimizations to the
generated project and code.

• Setting Project options to Debug applies the -g optimization to the
generated project and code.

• Setting Project options to Release applies the -O and -Ov100
optimizations to the generated project and code

Command-Line Information

Parameter: compilerOptionsStr
Type: string
Value: Custom | Debug | Release
Default: Custom

Recommended Settings

Application Setting

Debugging Custom

Traceability Custom

Efficiency No impact
Safety precaution No impact

9-16

Embedded IDE Link VS Pane

See Also
For more information, refer to Embedded IDE Link VS Pane Options.

9-17

9 Embedded IDE Link™ VS Software Configuration Parameters

Linker options string
Enables you to specify linker command options that determine how to link
your project when you build your project.

Settings
Default: No default

Tips

• Use spaces between options.

• Verify that the options are valid. The software does not validate the
options string.

• Setting Project options to Release applies the -ip and -e optimizations
to the generated project and code

• To reset the linker command options to the default values, click Reset.

Dependencies
Setting Build action to Archive_library removes this parameter.

Command-Line Information

Parameter: linkerOptionsStr
Type: string
Value:
Default:

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

9-18

Embedded IDE Link VS Pane

See Also
For more information, refer to Embedded IDE Link VS Pane Options.

9-19

9 Embedded IDE Link™ VS Software Configuration Parameters

System stack size (MAUs)
Allocates memory for the system stack on the processor.

Settings
Default: 512

Minimum: 0

Maximum: Available memory

• Enter the stack size in minimum addressable unit (MAUs).

• The software does not verify that your size is valid. Be sure that you enter
an acceptable value.

Dependencies
Setting Build action to Archive_library removes this parameter.

Command-Line Information

Parameter: systemStackSize
Type: int
Default: 512

Recommended Settings

Application Setting

Debugging int

Traceability int

Efficiency int

Safety precaution No impact

See Also
For more information, refer to Embedded IDE Link VS Pane Options.

9-20

Embedded IDE Link VS Pane

Build action
Defines how Real-Time Workshop software responds when you press Ctrl+B
to build your model.

Settings
Default: Build_and_execute

Build_and_execute
Builds your model, generates code from the model, and then compiles
and links the code. After linking, this setting downloads and runs the
executable on the processor.

Create_project
Directs Real-Time Workshop software to create a new project in the IDE.

Archive_library
Invokes the IDE Archiver to build and compile your project, but It does
not run the linker to create an executable project. Instead, the result
is a library project.

Build
Builds a project from your model. Compiles and links the code. Does not
download and run the executable on the processor.

Create_processor_in_the_loop_project
Directs the Real-Time Workshop code generation process to create PIL
algorithm object code as part of the project build.

Dependencies
Selecting Archive_library removes the following parameters:

• Interrupt overrun notification method

• Interrupt overrun notification function

• Profile real-time task execution

• Number of profiling samples to collect

• Linker options string

• Reset

9-21

9 Embedded IDE Link™ VS Software Configuration Parameters

• Export IDE link handle to base workspace

Selecting Create_processor_in_the_loop_project removes the following
parameters:

• Interrupt overrun notification method

• Interrupt overrun notification function

• Profile real-time task execution

• Number of profiling samples to collect

• Linker options string

• Reset

• Export IDE link handle to base workspace with the option set to
export the handle

Command-Line Information

Parameter: buildAction
Type: string
Value: Build | Build_and_execute | Create_project Archive_library
| Create_processor_in_the_loop_project
Default: Build_and_execute

Recommended Settings

Application Setting

Debugging Build_and_execute

Traceability Archive_library

Efficiency No impact
Safety precaution No impact

See Also
For more information, refer to Embedded IDE Link VS Pane Options.

9-22

Embedded IDE Link VS Pane

For more information about PIL, refer to Using Processor-in-the-Loop.

9-23

9 Embedded IDE Link™ VS Software Configuration Parameters

Interrupt overrun notification method
Specifies how your program responds to overrun conditions during execution.

Settings
Default: None

None
Your program does not notify you when it encounters an overrun
condition.

Print_message
Your program prints a message to standard output when it encounters
an overrun condition.

Call_custom_function
When your program encounters an overrun condition, it executes a
function that you specify in Interrupt overrun notification function.

Tips

• The definition of the standard output depends on your configuration.

• The custom function must exist in the current working directory.

Dependencies
Selecting Call_custom_function enables the Interrupt overrun
notification function parameter.

Setting this parameter to Call_custom_function enables the Interrupt
overrun notification function parameter.

Command-Line Information

Parameter: overrunNotificationMethod
Type: string
Value: None | Print_message | Call_custom_function
Default: None

9-24

Embedded IDE Link VS Pane

Recommended Settings

Application Setting

Debugging Print_message or Call_custom_function

Traceability Print_message

Efficiency None

Safety precaution No impact

See Also
For more information, refer to Embedded IDE Link VS Pane Options.

9-25

9 Embedded IDE Link™ VS Software Configuration Parameters

Interrupt overrun notification function
Specifies the name of a custom function your code runs when it encounters an
overrun condition during execution.

Settings
No Default

Tips
Specify a function that exists in your current working directory.

Dependencies
This parameter is enabled by setting Interrupt overrun notification
method to Call_custom_function.

Command-Line Information

Parameter: overrunNotificationFcn
Type: string
Value: no default
Default: no default

Recommended Settings

Application Setting

Debugging String
Traceability String
Efficiency No impact
Safety precaution No impact

See Also
For more information, refer to Embedded IDE Link VS Pane Options.

9-26

Embedded IDE Link VS Pane

PIL block action
Specifies whether Real-Time Workshop software builds the PIL block and
downloads the block to the processor

Settings
Default: Create_PIL_block_and_download

Create_PIL_block_build_and_download
Builds and downloads the PIL application to the processor after creating
the PIL block. Adds PIL interface code that exchanges data with
Simulink.

Create_PIL_block
Creates a PIL block, places the block in a new model, and then stops
without building or downloading the block. The resulting project will
not compile in the IDE.

None
Configures model to generate a VisualDSP++ software project that
contains the PIL algorithm code. Does not build the PIL object code or
block. The new project will not compile in the IDE.

Tips

• When you click Build on the PIL dialog box, the build process adds the PIL
interface code to the project and compiles the project in the IDE.

• If you select Create PIL block, you can build manually from the block
right-click context menu

• After you select Create PIL Block, copy the PIL block into your model to
replace the original subsystem. Save the original subsystem in a different
model so you can restore it in the future. Click Build to build your model
with the PIL block in place.

• Add the PIL block to your model to use cosimulation to compare PIL
results with the original subsystem results. Refer to the demo “Getting
Started with Application Development” in the product demos Embedded
IDE Link VS

9-27

9 Embedded IDE Link™ VS Software Configuration Parameters

• When you select None or Create_PIL_block, the generated project will
not compile in the IDE. To use the PIL block in this project, click Build
followed by Download in the PIL block dialog box.

Dependency
Enable this parameter by setting Build action to
Create_processor_in_the_loop_project.

Command-Line Information

Parameter: configPILBlockAction
Type: string
Value: None | Create_PIL_block |
Create_PIL_block_build_and_download
Default: Create_PIL_block

Recommended Settings

Application Setting

Debugging Create_PIL_block_build_and_download

Traceability Create_PIL_block_build_and_download

Efficiency None

Safety precaution No impact

See Also
For more information, refer to “Using Processor-in-the-Loop” on page 4-3.

9-28

Embedded IDE Link VS Pane

Maximum time allowed to build project (s)
Specifies how long, in seconds, the software waits for the project build process
to return a completion message.

Settings
Default: 1000

Minimum: 1

Maximum: No limit

Tips

• The build process continues even if MATLAB does not receive the
completion message in the allotted time.

• This time-out value does not depend on the global time-out value in a
adivdsp object or the Maximum time to complete IDE operations
time-out value.

Dependency
This parameter is disabled when you set Build action to Create_project.

Command-Line Information

Parameter:TBD
Type: int
Value: Integer greater than 0
Default: 100

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact

9-29

9 Embedded IDE Link™ VS Software Configuration Parameters

Application Setting

Efficiency No impact
Safety precaution No impact

See Also
For more information, refer to Embedded IDE Link VS Pane Options.

9-30

Embedded IDE Link VS Pane

Maximum time to complete IDE operations (s)
specifies how long the software waits for IDE functions, such as read or
write, to return completion messages.

Settings
Default: 10

Minimum: 1

Maximum: No limit

Tips

• The IDE operation continues even if MATLAB does not receive the
message in the allotted time. Click Functions — Alphabetical Listto see a
list of the functions and methods.

• This time-out value does not depend on the global time-out value in a
adivdsp object or the Maximum time allowed to build project (s)
time-out value

Command-Line Information

Parameter:TBD
Type: int
Value:
Default: 10

Recommended Settings

Application Setting

Debugging No impact
Traceability No impact
Efficiency No impact
Safety precaution No impact

9-31

9 Embedded IDE Link™ VS Software Configuration Parameters

See Also
For more information, refer to Embedded IDE Link VS Pane Options.

9-32

Embedded IDE Link VS Pane

Source file replacement
Selects the diagnostic action to take if Embedded IDE Link CC software
detects conflicts when you replace source code with custom code.

Settings
Default: warn

none
Does not generate warnings or errors when it finds conflicts.

warning
Displays a warning.

error
Terminates the build process and displays an error message that
identifies which file has the problem and suggests how to resolve it.

Tips

• The build operation continues if you select warning and the software
detects custom code replacement problems. You see warning messages as
the build progresses.

• Use the error setting the first time you build your project after you specify
custom code to use. The error messages can help you diagnose problems
with your custom code replacement files.

• Use none when you are sure the replacement process is correct and do not
want to see multiple messages during your build.

Command-Line Information

Parameter: DiagnosticActions
Type: string
Value: none | warning | error
Default: warning

9-33

9 Embedded IDE Link™ VS Software Configuration Parameters

Recommended Settings

Application Setting

Debugging error

Traceability error

Efficiency warning

Safety precaution error

See Also
For more information, refer to Embedded IDE Link VS Pane Parameters.

For more information about custom code replacement, refer to Configuring
Custom Code in the Real-Time Workshop User’s Guide.

9-34

A

Examples

Use this list to find examples in the documentation.

A Examples

Automation Interface
“Getting Started with Automation Interface” on page 2-2

Working with adivdsp Objects
“Example — Constructor for adivdsp Objects” on page 2-18
“Example — Setting Object Property Values at Construction” on page 2-21
“Example — Setting Object Property Values Using set” on page 2-22
“Example — Retrieving Object Property Values Using get” on page 2-22

Working with adivdsp objects
“Example — Direct Property Referencing in Links” on page 2-22

Asynchronous Scheduler
“Configuring Models for Asynchronous Scheduling” on page 3-10
“Idle Task” on page 3-12
“Hardware Interrupt Triggered Task” on page 3-13

Mutlitasking Scheduler
“Multitasking Scheduler Examples” on page 3-23

Project Generator
“Project Generator Tutorial” on page 3-37

A-2

Verification

Verification
“PIL Block” on page 4-6
“Profiling Execution by Tasks” on page 4-11
“Profiling Execution By Subsystems” on page 4-14
“Profiling System Stack Use” on page 4-19

A-3

A Examples

A-4

B

Reported Limitations and
Tips

B Reported Limitations and Tips

Reported Issues Using Embedded IDE Link VS Software
Some long-standing issues affect the Embedded IDE Link VS software. When
you are using adivdsp objects and methods to work with VisualDSP++
software and supported hardware or simulators, recall the information in
this section.

The latest issues in the list appear at the bottom. PIL means
“processor-in-the-loop” and is similar to hardware-in-the-loop operations.

Using 64-bit Symbols in a 64-bit Memory Section
on SHARC Processors
VisualDSP++ compiler design prevents Embedded IDE Link VS from
generating code the accesses 64-bit memory locations correctly. To avoid
unexpected results, do not allocate 64-bit data or symbols to 64-bit memory
locations on SHARC processors.

When 64-bit data is in 64-bit memory, the compiler generates code that
accesses the 64-bit locations as two 32-bit values. Thus, the code does not
read and write the 64-bit data correctly. It reads or writes every other 32-bit
location, returning or writing incorrect values and possibly exceeding the
allocated memory.

Refer to pp. 5-33 in the ADSP-2136x SHARC Processor Programming
Reference, revision 1.0 for a description of how the compiler treats 64-bit (long
word) data values.

B-2

Index

IndexA
access properties 2-20
adivdsp 2-18
adivdsp object properties 2-26

procnum 2-25
sessionname 2-26

Analog Devices
general code generation options 3-51
processor options 3-47
run-time options 3-53
TLC debugging options 3-50

Analog Devices model reference 3-69
Analog Devices processor

code generation options 3-53
Archive_library 3-71
asynchronous scheduling 3-10

B
block limitations using model reference 3-72
build configuration

compiler options, default 3-60
custom 3-60

C
compiler options string, set compiler options 3-57
configuration parameters

pane 9-4
buildAction 9-21
Compiler options string: 9-16
configPILBlockAction 9-27
DiagnosticActions 9-33
gui item name 9-10 9-29 9-31
IDE link handle name: 9-6
Inline run-time library functions 9-12
Interrupt overrun notification

function: 9-26
Linker options string: 9-18
overrunNotificationMethod 9-24

Profile real-time execution 9-7
profileBy 9-9
projectOptions 9-14
System stack size (MAUs): 9-20

configure the software timer 8-39
CPU clock speed 8-39
create custom target function library 3-68
Create_project option 3-53
current CPU clock speed 8-39
custom compiler options 3-60
custom project options 3-60

D
debug operation

new 6-28
default compiler options 3-60
default project options 3-60
discrete solver 3-44

E
Embedded IDE Link™ VS

use Analog Devices blocks 3-3
Embedded IDE Link™ VS build options

Create_project 3-53
enabling interrupts 3-19
execution in timer-based models 3-17
execution profiling

subsystem 4-14
task 4-11

F
file and project operation

new 6-28
fixed-step solver 3-44
functions

overloading 2-23

Index-1

Index

G
generate optimized code 3-53
getting properties 2-22

I
Inline Signal Processing Blockset functions

option 3-53
interrupts

enabling 3-19
mapping 3-19

intrinsics. See target function library
issues, using PIL 4-6

L
link filters properties

getting 2-22
link properties

about 2-25
setting 2-22

link properties, details about 2-25
linker options string, set linker options 3-57
linking objects

quick reference 2-24
links

closing VisualDSP++® 2-16
details 2-25
loading files into VisualDSP++® IDE 2-9
working with your processor 2-11

M
mapping interrupts 3-19
Memory Allocate block 8-13
Memory Copy block 8-19
model execution 3-10
model reference 3-69

about 3-69
Archive_library 3-71

block limitations 3-72
modelreferencecompliant flag 3-72
setting build action 3-71
target preferences blocks 3-71
using 3-70

model schedulers 3-10
modelreferencecompliant flag 3-72

O
object

adivdsp 2-18
object properties

about 2-24
quick reference table 2-24

objects
creating objects for VisualDSP++® IDE 2-7
introducing the objects for VisualDSP++®

IDE tutorial 2-2
selecting processors for VisualDSP++® IDE

2-6
tutorial about using Automation Interface

for VisualDSP++® IDE 2-2
optimization, processor specific 3-53
overloading 2-23

P
PIL block 4-6
PIL cosimulation

definitions 4-4
how cosimulation works 4-5
overview 4-3

PIL issues 4-6
processor configuration options

overrun action 3-54
processor function library. See target function

library
processor specific optimization 3-53
procnum 2-25

Index-2

Index

profiling execution
by subsystem 4-14
by task 4-11

project options
compiler options string 3-57
default 3-60
linker options string 3-57
stack size 3-57

properties
object properties 2-24
referencing directly 2-22
retrieving 2-20

function for 2-22
retrieving by direct property referencing 2-22
setting 2-20

R
Real-Time Workshop options

generate code only 3-49
Real-Time Workshop solver options 3-44
run-time options

build action 3-53
overrun action 3-54

S
sessionname 2-26
set overrun action, overrun action 3-54
set properties 2-20
set stack size 3-57
solver option settings 3-44
stack size, set stack size 3-57
structure-like referencing 2-22
synchronous scheduling 3-17

T
target configuration options

system target file 3-48
target function library

assessing execution time after selecting a
library 3-65

create a custom library 3-68
optimization 3-62
seeing the library changes in your generated

code 3-65
selecting the library to use 3-64
use in the build process 3-63
using with link software 3-62
viewing library tables 3-68
when to use 3-64

target preferences blocks in referenced
models 3-71

TFL. See target function library
timeout

timeout 2-26
timer, configure 8-39
timer-based models, execution 3-17
timer-based scheduler 3-17
timing 3-10
tutorials

objects for VisualDSP++® 2-2

V
viewing target function libraries 3-68
VisualDSP++® IDE objects

tutorial about using 2-2

Index-3

	toc
	Getting Started
	Product Overview
	The Structure and Components of Embedded IDE Link VS Software
	Automation Interface
	Project Generator
	Verification
	Processor-in-the-Loop Cosimulation
	Task Execution and Stack Usage Profiling

	Automation Interface
	Getting Started with Automation Interface
	Introducing the Embedded IDE Link VS Tutorial
	Functions for Working with VisualDSP++ Software
	Methods for Working with adivdsp Objects in VisualDSP++ Software
	Running VisualDSP++ Software on Your Desktop — Visibility

	Running the Interactive Tutorial
	Selecting Your Session and Processor
	Querying Objects for VisualDSP++ IDE
	Loading Files into VisualDSP++ IDE
	Running the Project
	Working with Global Variables and Memory
	Working with Local Variables and Memory
	Closing Files and Projects
	Closing the Connections or Cleaning Up VisualDSP++ Software
	Tutorial Summary

	Constructing Objects
	Example — Constructor for adivdsp Objects

	Properties and Property Values
	Setting and Retrieving Property Values
	Setting Property Values Directly at Construction
	Example — Setting Object Property Values at Construction

	Setting Property Values with set
	Example — Setting Object Property Values Using set

	Retrieving Properties with get
	Example — Retrieving Object Property Values Using get

	Direct Property Referencing to Set and Get Values
	Example — Direct Property Referencing in Links

	Overloaded Functions for adivdsp Objects

	adivdsp Object Properties
	Quick Reference to adivdsp Properties
	Details About adivdsp Object Properties
	procnum
	sessionname
	timeout

	Project Generator
	Introducing Project Generator
	Using the Embedded IDE Link VS Blockset
	Schedulers and Timing
	Configuring Models for Asynchronous Scheduling
	Before
	After
	Algorithm Inside the Function Call Subsystem Block

	Using Asynchronous Scheduling
	Idle Task
	Hardware Interrupt Triggered Task

	Using Scheduling Blocks to Control Code Execution
	Comparing Synchronous and Asynchronous Interrupt Processing
	Using Synchronous Scheduling
	Using Asynchronous Scheduling
	Mapping and Enabling Interrupts in Generated Code

	Multitasking Scheduler Examples
	Three Odd-Rate Tasks Without Preemption and Overruns
	Two Tasks with the Base-Rate Task Overrunning, No Preemption
	Two Tasks with Sub-Rate 1 Overrunning Without Preemption
	Three Even-Rate Tasks with Preemption and No Overruns
	Three Odd-Rate Tasks Without Preemption and the Base and Sub-Rat
	Three Odd-Rate Tasks with Preemption and Sub-Rate 1 Task Overrun
	Three Even-Rate Tasks with Preemption and the Base-Rate and Sub-

	Project Generator Tutorial
	Building the Model
	Adding the Target Preferences Block to Your Model
	Specifying Simulink Configuration Parameters for Your Model
	Setting Solver Options
	Setting Real-Time Workshop Software Options
	Setting Embedded IDE Link VS Options
	Creating Your Project

	Setting Code Generation Options for Analog Devices Processors
	Setting Real-Time Workshop Category Options
	Target File Selection
	System target file

	Build Process
	Custom storage class
	Generate code only

	Report Options
	Create Code Generation report
	Launch report automatically

	Debug Pane Options
	Optimization Pane Options
	Embedded IDE Link VS Pane Options
	Runtime
	Build action
	Interrupt overrun notification method
	Interrupt overrun notification function
	PIL block action
	Maximum time allowed to build project (s)
	Project Options
	Compiler options string
	Linker options string
	System stack size (MAUs)
	Code Generation
	Link Automation
	Maximum time to complete IDE operations (s)
	Diagnostic Options
	Source file replacement

	Overrun Indicator and Software-Based Timer
	Embedded IDE Link VS Default Project Options — Custom
	Default Project Options in Custom

	Optimizing Embedded Code with Target Function Libraries
	About Target Function Libraries and Optimization
	Code Generation Using the Target Function Library

	Using a Processor-Specific Target Function Library to Optimize C
	Process of Determining Optimization Effects Using Real-Time Prof
	Reviewing Processor-Specific Target Function Library Changes in
	Reviewing Code Manually
	Using Model-to-Code Tracing
	Using a File Differencing Scheme

	Reviewing Target Function Library Operators and Functions
	Creating Your Own Target Function Library

	Model Reference and Embedded IDE Link VS Software
	How Model Reference Works
	Model Reference in Simulation
	Model Reference in Code Generation

	Using Model Reference with Embedded IDE Link VS Software
	Build Action Setting
	Target Preferences Blocks in Reference Models
	Other Block Limitations

	Configuring Targets to Use Model Reference

	Verification
	What is Verification?
	Using Processor-in-the-Loop
	Processor-in-the-Loop Overview
	PIL Block
	PIL Issues
	Generic PIL Issues

	Creating and Using PIL Blocks

	Real-Time Execution Profiling
	Overview
	Profiling Execution by Tasks
	Profiling Execution By Subsystems

	System Stack Profiling
	Overview
	Profiling System Stack Use

	Function Reference
	Constructor
	IDE Operations
	Processor Operations
	Debug Operations
	Read/Write Operations
	Get Information Operations
	Object Information
	Status Operations
	Session Operations
	Verification

	Functions — Alphabetical List
	Block Reference
	Blackfin DSP Support
	Core Support
	SHARC DSP Support
	TigerSHARC DSP Support
	Target Preferences

	Blocks — Alphabetical List
	Embedded IDE Link VS Software Configuration Parameters
	Embedded IDE Link VS Pane
	Embedded IDE Link VS Overview
	IDE link handle name
	Settings
	Command-Line Information
	Recommended Settings
	See Also

	Profile real-time execution
	Settings
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Profile by
	Settings
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Number of profiling samples to collect
	Settings
	Tips
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Inline run-time library functions
	Settings
	Tips
	Command-Line Information
	Recommended Settings
	See Also

	Project options
	Settings
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Compiler options string
	Settings
	Tips
	Command-Line Information
	Recommended Settings
	See Also

	Linker options string
	Settings
	Tips
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	System stack size (MAUs)
	Settings
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Build action
	Settings
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Interrupt overrun notification method
	Settings
	Tips
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	Interrupt overrun notification function
	Settings
	Tips
	Dependencies
	Command-Line Information
	Recommended Settings
	See Also

	PIL block action
	Settings
	Tips
	Dependency
	Command-Line Information
	Recommended Settings
	See Also

	Maximum time allowed to build project (s)
	Settings
	Tips
	Dependency
	Command-Line Information
	Recommended Settings
	See Also

	Maximum time to complete IDE operations (s)
	Settings
	Tips
	Command-Line Information
	Recommended Settings
	See Also

	Source file replacement
	Settings
	Tips
	Command-Line Information
	Recommended Settings
	See Also

	Examples
	Automation Interface
	Working with adivdsp Objects
	Working with adivdsp objects
	Asynchronous Scheduler
	Mutlitasking Scheduler
	Project Generator
	Verification

	Reported Limitations and Tips
	Reported Issues Using Embedded IDE Link VS Software
	Using 64-bit Symbols in a 64-bit Memory Section on SHARC Process

	Index

